Section 6.1 - Areas Between Curves (lecture 1) - p. 371 Stewart, 4th Ed.
Recall: The area between $f(x)$ and $g(x)$ from $x=a$ to $x=b$ is $\int_{a}^{b}(f(x)-g(x)) d x$ when $f(x)$ is "above" $g(x)$ and is $\int_{a}^{b}(g(x)-f(x)) d x$ when $f(x)$ is "below" $g(x)$. In other words,
(Area between $f(x)$ and $g(x)$ from $x=a$ to $x=b$) $=\int_{a}^{b}|f(x)-g(x)| d x$.
Here we are integrating with respect to x; in other words,

- The limits of integration are x-values
- The integrand is a function of x.

We write $d x$ at the end of the integral to indicate this scenario.
Sometimes it's easier to integrate with respect to y. This is usually the case when the curves in question are not functions of x. I like to call this "sideways integration."

Example: Find the area enclosed by the curves $x=y^{2}$ and $x=2 y$.
The curves look like $y=x^{2}$ and $y=2 x$, except sideways:

Figure 1: Area enclosed by $x=y^{2}$ and $x=2 y$

In "sideways integration," instead of looking for the "curve on top," we look for the "curve on the right." This is because we need to figure out which curve has larger x-values, not y-values.

Notice that from $y=0$ to $y=2$, the "curve on the right" is $x=2 y$. So the area is

Example. Find the area enclosed by the curves $y=2 x, x=\cos y, y=0$, and $y=\frac{\pi}{4}$.
What does the curve $x=\cos y$ look like? Is y a function of x here? ___ , because

Idea: Write the curves as functions of y :

$$
\begin{gathered}
x=\frac{y}{2} \\
x=\cos y
\end{gathered}
$$

It would be difficult to figure out exactly where these curves intersected, which curve was on the right and when, etc. But we could write a formula for the area between the curves from $y=0$ to $y=\frac{\pi}{4}$:

$$
\int_{0}^{\pi / 4}\left|\frac{y}{2}-\cos y\right| d y
$$

Encoded in this formula is the notion that whatever curve is on the right at a given y-value, that's the one that will be written first when we evaluate the integral.

The curves actually look like (Figure 2).

Figure 2: Area enclosed by $y=2 x, x=\cos y, y=0$, and $y=\frac{\pi}{4}$

Notice that from $y=0$ to $y=\frac{\pi}{4}$, the "curve on the right" is $x=\cos y$. So the area is

Summary:

- Figure out whether to integrate with respect to x or with respect to y.
- If y, rewrite equations of curves as functions of y (solve for x).
- Figure out which function is more positive (in either the x or the y sense) and where. It can be helpful to draw a graph. Find intersection points and split up the integral, if necessary.
- Evaluate the integral and do a reality check.

Example. Find the area enclosed by $y=-x+1$ and $y^{2}=3 x-1$.
Question. Should we integrate with respect to x or y ?
Answer. \qquad is better, since \qquad -.

Rewrite. The curves are $x=$ \qquad and $x=$ \qquad
Draw a graph:

Notice that $x=1-y$ is further to the right. Next, locate the points of intersection: set

$$
1-y=\frac{1}{3} y^{2}+\frac{1}{3}
$$

The intersection points are approximately at \qquad and \qquad _.

Therefore the area is approximately
(This integral is not hard, but it's easy to make mistakes. Try it yourself and check the answer.)

