Section 6.2 - Volume - p. Stewart, 4th Ed. (lecture 1)
We will ultimately learn how to define the volume of any solid by an integral, but we will chiefly focus on the volume of a solid of rotation, i.e. a solid formed by rotating a region about an axis.

Example. A solid sphere is formed when the region bounded by $y=\sqrt{1-x^{2}}$ and the x-axis is rotated about the x-axis:

Question. What is formed when the rectangle shown in Figure 1 is rotated about the y-axis? About the line $x=-2$?

Figure 1: A rectangle to be rotated about an axis

Answer:

- About the y-axis: \qquad
- About $x=-1$: \qquad

We know the formulas for these volumes. But how would we find the volume, say, of the solid formed by rotating the region enclosed by $f(x)=\sqrt{x}, y=0$, and $x=4$ about the x-axis?

Figure 2: A more complicated region to be rotated about an axis

To answer this, we'll have to build up a decent definition of volume - it will involve the limit of the sum of volumes. The 3-D analogue of recangles will be cylinders. There will be two main methods for calculating the volume of a solid of rotation: the disk method (§6.2) and the shell method (§6.3).

The Disk Method:

1. Volume of a cylinder.

Volume of a cylinder of radius r and height h is $\pi r^{2} h$ (the area of the base times the height). Or, for a cylinder on its side with radius $f(x)$ and "height" (width) Δx, the volume is

$$
\pi(f(x))^{2} \Delta x
$$

Does this look suspiciously familiar?

2. Cross-section of a solid of rotation.

We can always cut a solid of rotation so that the cross-section is a circle.
Previous Example. what is the area of the cross-section taken at $x=1$? At $x=2$? At any x between 0 and 4?

At $x=1$:

At $x=2$:

At any x :

The book refers to the area of a cross-section at x as $A(x)$, since it's a function of x (or write $\mathrm{A}(\mathrm{y})$ if you're doing a solid rotated about a vertical line-we'll get to this).
3. Estimating the volume of a solid of rotation.

We will use cylindrical "slabs" to approximate the volume.
Previous Example. Estimate the volume using four cylinders of radii $f(1), f(2), f(3)$, and $f(4)$.

Recall from above: volume of a cylinder of radius $f(x)$ is $A(x) \Delta x$, where $A(x)=\pi(f(x))^{2}$. For our example, $A(x)=\pi x$ and $\Delta x=1$. So the volume estimate is

Notice that we estimated the volume of the solid by using as the radius of each cylinder the height at the right endpoint of each interval and then added them up. So the formula was

$$
\sum_{i=1}^{4} A\left(x_{i}\right) \Delta x
$$

where $x_{1}=1, x_{2}=2, x_{3}=3, x_{4}=4$. We could also have used left endpoints, midpoints, etc.

Looking even more familiar?

4. Finding the exact volume of a solid of rotation.

Similar to rectangles, our estimate of the volume will get better the more rectangles we put in. The estimate of the volume using right endpoints and n cylinders is

$$
\sum_{i=1}^{n} A\left(x_{i}\right) \Delta x
$$

Can you guess the formula for the exact volume from a to b ? It is

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} A\left(x_{i}\right) \Delta x
$$

where $\Delta x=b-a n$, as always. Of course, we know an easier way to write this! The volume is

$$
\int_{a}^{b} A(x) d x
$$

For our example, then, the volume is $\int_{0}^{4} \pi x d x=$ (finish)

Summary of the disk method for solids formed by rotating about the x-axis:

- Figure out what the cross-sectional area is (for solids of rotation, the cross-section is always a disk with or without a hole, so the area is

$$
A(x)=\pi \cdot(f(x)-g(x))^{2}
$$

(where $f(x)$ is the "top" function and $g(x)$ is the "bottom" function).

- Find the volume, which is $\int_{a}^{b} A(x) d x$.

If the axis of rotation is $y=c$ for $c \neq 0$, then you'll need to adjust $A(x)$ to account for this.
The way to do it: radius of larger circle is now $f(x) \pm c$ (where $f(x)$ is the "top" function). Similarly, radius of smaller circle is now $g(x) \pm c$. The " \pm " depends on whether c is positive or negative. Hence

$$
A(x)=\pi(f(x) \pm c)^{2}-\pi(g(x) \pm c)^{2}
$$

