Section 6.2 - Volume - p. Stewart, 4th Ed. (lecture 2)
Recall. The Disk Method.

- The volume of a solid formed by rotating a region about the x-axis is

$$
\int_{a}^{b} A(x) d x
$$

where

- the region goes from $x=a$ to $x=b$
- the region is formed from functions of x, say $f(x)$ above and $g(x)$ below
- $A(x)=\pi R^{2}-\pi r^{2}$ is the cross-sectional area at x.
- If the axis of rotation is the x-axis, then $A(x)=\pi \cdot(f(x)-g(x))^{2}$, because the radii are just the heights of the functions at each value of x.
- If the axis of rotation is $y=c$ for $c \neq 0$, then you'll need to adjust $A(x)$ to account for this.
The way to do it: the radius of larger circle is now $|f(x) \pm c|$ (where $f(x)$ is the "top" function). Similarly, radius of smaller circle is now $|g(x) \pm c|$. The " \pm " depends on whether c is positive or negative. Hence

$$
A(x)=\pi(f(x) \pm c)^{2}-\pi(g(x) \pm c)^{2} .
$$

Draw a picture to see whether to add or subtract.
Example 1. Find the volume of the solid obtained by rotating the region enclosed by $y=2 x$ and $y=x^{2}$ about the line $y=5$.

Solution:

1. Find where the curves intersect.

The curves intersect at $x=$ \qquad and $x=$ \qquad
2. Figure out what the radii are.

Draw a picture:

Notice that if the distance from $y=x^{2}$ to the x-axis is x^{2} and the distance from $y=5$ to the x-axis is 5 , then the difference must be $5-x^{2}$. Similarly for $y=2 x$. So $R=5-x^{2}$ and $r=5-2 x$.
3. Find $A(x)$ and compute the integral.
$A(x)=$

Thus the volume is

Caution. The formula for $A(x)$ is $\pi\left(R^{2}-r^{2}\right)$, NOT $\pi(R-r)^{2}$!
The disk method can also be used to find the volume of a solid formed from a region bounded by functions of y about a vertical axis; the formula is

$$
\int_{c}^{d} A(y) d y
$$

where $A(y)$ is the cross-sectional area at y, found similarly, and c and d are y-limits.
Example 2. Find the volume of the solid obtained by rotating the region enclosed by $y^{2}=x$ and $y=\frac{1}{3} x$ about the y-axis.

Solution:

1. Write the curves as functions of y.
2. Find where the curves intersect.

Similar to the previous calculation, the curves intersect at $y=$ \qquad and $y=$ \qquad
3. Figure out what the radii are.

Draw a picture:

The radii are
and \qquad , so $A(y)=$ \qquad and the volume is

