Section 6.3 - Volumes by Cylindrical Shells - p. 389 Stewart, 4th Ed.
Recall. the disk method was good for finding volumes

- with cross-sectional area $A(x)$ about a horizontal axis, or
- with cross-sectional area $A(y)$ about a vertical axis.

What about vice-versa?
Example. How would we find the volume of the solid obtained by rotating the region enclosed by $y=2 x^{2}-x^{3}$ and $y=0$ about the y-axis?

Notice that we've got everything in terms of x 's, but we're trying to rotate about a vertical axis. This would not be fun to do with disks! We'd have to write everything in terms of y and split up the region a bunch of times.

The Shell Method is another way to compute volumes, which takes care of those missing cases, namely:

- those with everything in terms of x about a vertical axis, or
- those with everything in terms of y about a horizontal axis.

Here's how it works: we estimate the volume using cylindrical shells with a certain thickness Δr, and then we let the thickness go to 0 as we make the number of shells infinite.

Example. The volume of a cylinder of radius 4 and height 2 can be gotten by taking 4 shells of height 2 and thickness 1 (see Figure 1).

Figure 1: A complicated way to compute the volume of a cylinder

Example. The volume of a cone of radius 4 and height 2 can be estimated using 4 shells of varying heights and thickness 1 (see Figures 2 and 3).

This is an overestimate, of course! But, as always, the more shells we use, the better the estimate.

Volume of a shell with outer radius r_{2} and inner radius r_{1} is

$$
\pi r_{2}^{2} h-\pi r_{1}^{2} h=\pi h\left(r_{2}^{2}-r_{1}^{2}\right)
$$

Figure 2: Estimating the volume of a cone - side view of shells

Figure 3: Estimating the volume of a cone - 3D view

Rewrite this in terms of

- $\Delta r=r_{2}-r_{1}$
- average of the radii $r=\frac{r_{2}+r_{1}}{2}$:

$$
\begin{aligned}
\pi h\left(r_{2}^{2}-r_{1}^{2}\right) & =\pi h\left(r_{2}+r_{1}\right)\left(r_{2}-r_{1}\right) \\
& =2 \pi h\left(\frac{r_{2}+r_{1}}{2}\right) \Delta r \quad=2 \pi r h \Delta r=(\text { circumference }) \cdot(\text { height }) \cdot(\text { thickness }) .
\end{aligned}
$$

Back to solids of rotation with x 's about the y-axis: notice that $r=x, \Delta r=\Delta x$, and $h=f(x)-g(x)$. In other words, the volume of a shell with average radius x and height $f(x)-g(x)$ is

$$
2 \pi x(f(x)-g(x)) \Delta x
$$

We add up all these volumes from a to b :

$$
\sum_{i=1}^{n} 2 \pi x_{i}\left(f\left(x_{i}\right)-g\left(x_{i}\right)\right) \Delta x
$$

Then we let $n \rightarrow \infty$:

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi x_{i}\left(f\left(x_{i}\right)-g\left(x_{i}\right)\right) \Delta x=\int_{a}^{b} 2 \pi x(f(x)-g(x)) d x .
$$

Example. Find the volume of the solid formed by rotating the region enclosed by $y=x^{2}$ and $y=x^{3}$ about the y-axis.

Solution: The volume is

Example. Same region, but rotate about $x=-2$.
What changes, the height or the radius? _. Going back to where we got the formula, we see that the r became an x when the axis of rotation was $x=0$. Now it's $x+2$. So the volume becomes

$$
\int_{0}^{1} 2 \pi(\square)\left(x^{2}-x^{3}\right) d x
$$

Multiply out the integrand to evaluate. Finish here:

We have seen how to find volumes of solids formed by functions of x about a vertical axis. Similarly we can do sideways integration to find volumes of solids formed by functions of y about a horizontal axis:

Example. The region enclosed by $x=y^{2}$ and $y=x-2$ about the line $y=3$.
Solution:

1. The new formula is $\int_{c}^{d} 2 \pi r h d y . r$ is now going to be in terms of y, and h is now the difference between two functions of y.
2. Draw a picture:
3. Rewrite the curves in terms of y :

$$
\begin{aligned}
& x= \\
& x= \\
&
\end{aligned}
$$

4. Find intersection points: $c=$ \qquad , $d=$ \qquad
5. The curve \qquad is on the right between -1 and 2 . So $h=$ \qquad .
6. Finally, $r=$ \qquad since that's how far away from $y=3$ we are. Therefore the volume is
(You should get $\frac{45 \pi}{2}$.)
