Section 6.4-Work - p. 394 Stewart, 4th Ed.
We have used the integral to find the volume of a solid of rotation. Now we will use the integral for a very different application: calculating how much work (in the physics sense) it takes to move something a certain distance.

To do this we need to know

- Newton's Second Law
- The difference between mass and weight
- Two different systems of units (English and metric)
- What work is.

Newton's Second Law. $F=m \cdot a$, where m is the mass of an object and a is the acceleration on the object. F stands for the net force acting on the object.

The difference between mass and weight.
Mass is a property of matter. It is the same everywhere in the universe. The kilogram is the main unit of mass in the metric system. The English system does not generally use a unit of mass!

Weight is a force. It is not an inherent property of matter. It is the result of gravity acting on a mass. The pound is the main unit of weight in the English system. In the metric system, it is the Newton, not the kilogram!

Two different systems of units.

Quantity	Metric	English
mass	kilograms (kg)	"slugs" (pounds $\left.\div 32 \mathrm{ft} . / \mathrm{s}^{2}\right)$
weight (force)	Newtons (N)	pounds (lb.)
distance	meters (m)	feet (ft.)
time	seconds (s)	seconds (s)
accel. due to gravity	$9.8 \mathrm{~m} / \mathrm{s}^{2}$	$32 \mathrm{ft} . / \mathrm{s}^{2}$
work	joules $(\mathrm{J})=$ Newton-meters $(\mathrm{N}-\mathrm{m})$	foot-pounds (ft.-lb.)

Notice the different perspective between the two systems! One focuses on mass, the other on weight.

Work. If the force acting on an object is constant, then $W=F \cdot d$, where F is the net force acting on the object, and d is the distance the object travels under that force.

If the force acting on an object is not constant, such as when the weight varies (example: water leaking out of a bucket, being pumped out of a tank, etc.), then we estimate the work done by taking n force measurements, then letting $n \rightarrow \infty$ and forming the integral

$$
W=\int_{a}^{b} f(x) d x
$$

where the object moves along the x-axis from a to b, and $f(x)$ is the force at x.
Example 1. (constant force): See Example 1, p. 394.
Part (a) (metric system): 1.2 kg is the mass of the book. So its weight is \qquad N (this is the [constant] force acting on the book). Therefore the work done to move it 0.7 m is

Part (b) (English system): 20 lb . is the weight of the object. This is already the [constant] force acting on the object. Therefore the work done to move it 6 ft . is

Notice that every quantity given above was in the standard units. Be careful! You must convert units to the standard units for mass, weight, distance, etc. before you solve the problem, or your answer will be incorrect!

Example 2. (variable force): The Spring Problem.

Hooke's Law says that the force required to maintain a spring stretched x units beyond its natural length is proportional to x :

$$
f(x)=k x \quad(k \text { measured in } \mathrm{N} / \mathrm{m})
$$

Our job in the spring problem is to use information given in the problem to find the spring constant k, then use it to answer the question.
$\S 6.4 \# 6$: A spring has a natural length of 20 cm . If a $25-\mathrm{N}$ force is required to keep it stretched to a length of 30 cm , how much work is required to stretch it from 20 cm to 25 cm ?

1. Convert all units.

Lengths of spring: From 20 to 30 cm is a distance of __m
From 20 to 25 cm is a distance of $\quad \mathrm{m}$

The force is already in the correct units.
2. Use information given to find k.

We know $f(0.1)=k \cdot 0.1=25 \mathrm{~N}$. Therefore $k=$ \qquad
3. Solve the problem.

The work done is

Sketches of other examples you will find in this section:
Example 3. (variable force): The Rope Problem.
$\S 6.4 \# 11$: A heavy rope, 50 ft . long, weighs $0.5 \mathrm{lb} . / \mathrm{ft}$. and hangs over the edge of a tall building. How much work is done in pulling the rope to the top of the building?

Weight of rope when $x \mathrm{ft}$. of rope have been pulled up is \qquad $\left(=\frac{1}{2} \mathrm{lb}\right.$. for each foot of rope remaining). So the work done is

Example 4. (variable force): The Tank Problem.
How much work is done in pumping the water out of a tank of a certain shape? For these problems we assume that the pump always lifts the water from the top.

Please read Example 4 on p. 396 for an explanation of this type of problem in the metric system.

Important! In either system, set your coordinate system upside-down, so that $x=0$ corresponds to the (initial) water level and $x=b$ is a positive number which corresponds to the depth of the tank. This will make the coordinate of the pump a negative number (or 0 if it is at the initial water level). If you set your coordinates in a different way, you may get an integral which is very hard to evaluate!

For the English system we need to know the weight of water ($62.5 \mathrm{lb} . / \mathrm{ft} .^{3}$), from which we can calculate the work done as

$$
\begin{aligned}
& \int_{0}^{b}(\text { weight of water })(\text { distance water is to be carried at depth } x)(\text { cross-sectional area) } d x \\
& \qquad=\int_{0}^{b} 62.5(x+P) A(x) d x
\end{aligned}
$$

where b is the initial depth of water in the tank and P is the height of the pump above the initial water level. The cross-sectional area becomes part of the integral in the same way it did in $\S 6.2$: the volume of a slab of infinitely small thickness Δx is just its cross-sectional area.

More on the metric system:

In the metric system, instead of the weight of water, we are given the density, which is $\frac{\text { mass }}{\text { volume }}=1000 \mathrm{~kg} / \mathrm{m}^{3}$. You must then find the mass by multiplying by volume:

$$
\text { mass }=1000 \cdot \text { volume } .
$$

Finally, we multiply by 9.8 to get the weight. Again, in the integral, the volume element will turn into the cross-sectional area. Hence the work done is

$$
\int_{0}^{b} 1000 \cdot 9.8(x+P) A(x) d x
$$

