
Math 151 - Important Ideas and Examples about Polynomials, Commutative Rings, and Fields

1. Important definitions and results pertaining to polynomials:

(a) A polynomial p(x) ∈ F [x] is irreducible over F if it cannot be factored into polynomials in
F [x] of strictly lower degree. Note that

i. Every non-zero polynomial over a field F can be factored as a constant polynomial times
a polynomial of the same degree. For instance, x2 + 1 = 2 ·

(
1
2x2 + 1

2

)
. In order to be

considered reducible, it must have an “interesting” factorization in the sense described
above.

ii. It does not make sense to speak of a polynomial’s irreducibility without specifying the
field over which potential factorizations of the polynomial are being considered. For
instance, x2 + 1 is irreducible over Q and R, but not over C.

(b) The greatest common divisor of f(x), g(x) ∈ F [x] is the unique monic polynomial d(x) ∈
F [x] of largest degree which divides both f(x) and g(x). Again, discussion of gcd must be
given in terms of a ground field F .

(c) Rational Root Theorem. The polynomial must have integer coefficients. The theorem can
find all possible rational roots.

(d) Eisenstein’s irreducibility criterion. The polynomial must have integer coefficients. The
criterion can decide if such a polynomial is irreducible over Q.

(e) Being reducible over Q is not the same as having roots in Q, unless the polynomial is of
degree 3 or less! For example, x4 + 2x2 + 1 = (x2 + 1)(x2 + 1) is certainly reducible over Q,
but it has no rational roots. The following statements hold for f(x) ∈ Q[x]:

• f(x) has a root c ∈ Q ⇒ f(x) has a factor x− c and is hence reducible over Q
• f(x) is irreducible over Q ⇒ f(x) has no rational roots

However, the converse statements are false:

• f(x) is reducible over Q 6⇒ f(x) has a rational root
• f(x) has no roots in Q 6⇒ f(x) is irreducible over Q

2. A field is a set F equipped with two commutative binary operations, addition and multiplication,
such that

• (F,+) is an abelian group under addition

• Every non-zero element of F has a multiplicative inverse (in the notation of #4, below,
F ∗ = F \ {0F }), and (F ∗, ·) is an abelian group under multiplication

• 0F 6= 1F

• The distributive law holds: (a + b)c = ac + bc for all a, b, c ∈ F .

Examples: Q, R, C, Zp for p prime.

3. A commutative ring is just like a field, except that not every non-zero element need have a
multiplicative inverse.

Examples: Z, Zn, F [x] for F a field. Any field is a commutative ring.

4. An element of a ring R with a multiplicative inverse in R is called a unit. The set of units of R,
denoted R∗ or R×, is a multiplicative group under the multiplication of R.

Examples: Z∗ = {±1} ∼= Z2, Z∗n = {[a]n ∈ Zn | (a, n) = 1}, F [x]∗ = F ∗ = F \{0F } for F a field.



5. A zero-divisor of a ring R is a (non-zero) element r ∈ R such that rs = 0 for some non-zero
s ∈ R. In other words, it is something you can multiply with a non-zero element and still get 0.
A commutative ring without zero-divisors is called an integral domain.

Examples of rings with zero-divisors: Zn for n not prime, e.g. in Z24, [6] · [8] = [0]. A
non-commutative example: M2(Q), e.g.[

2 −2
2 −2

] [
1 1
1 1

]
=

[
0 0
0 0

]
.

Handy fact: Any element that is a unit of a ring will never be a zero-divisor. For instance, notice
that all the matrices in the above example are not invertible. Exercise: Prove this handy fact.

Examples of integral domains: any field (see #2, above), Z, F [x] where F is any field

6. A ring homomorphism is a function ϕ : R → S, where R and S are rings, such that for all a,
b ∈ R,

• ϕ(a + b) = ϕ(a) + ϕ(b)
• ϕ(ab) = ϕ(a)ϕ(b)

Any ring homomorphism sends 0R to 0S . However, 1R is not always sent to 1S ! For example,
recall the ring homomorphism ϕ : Z8 → Z12 defined by ϕ([x]8) = [9x]12 discussed in class.

A ring isomorphism is a ring homomorphism as above which is also one-to-one and onto. If
ϕ : R → S is a ring isomorphism, then we say R is isomorphic to S and we write R ∼= S. In
that case R and S are essentially the same ring in every way (they have the same addition and
multiplication tables; if one is an integral domain, then so is the other, etc.). This is because any
ring isomorphism sends units to units, zero-divisors to zero-divisors, and so on. Every property
that an element in R has is sent to a corresponding element of S with that same property. In
particular, 1R is sent to 1S .

7. An ideal I of a commutative ring R is a subset which is closed under + and − and under
multiplication by things in R. We write I C R.

Important Ideas and Examples:

(a) If I C R then R/I := {a + I | a ∈ R} is a ring with operations

(a + I) + (b + I) = (a + b) + I

(a + I) · (b + I) = (ab) + I.

(b) If ϕ : R → S is a ring homomorphism, then kerϕ C R (note that kerϕ is the set of things
that get sent to 0S under ϕ).

(c) If I C R and 1R ∈ I, then I = R.
Proof. r ∈ R, 1R ∈ I implies r · 1R = r ∈ I by definition of ideal.

(d) Corollary. A field has no interesting ideals.
Proof. If I C F is non-zero, then let a 6= 0 in I. a is a unit since F is a field; hence a−1 ∈ F .
Thus by definition of ideal, a−1a = 1 ∈ I. By the above result, I = F .

8. First Isomorphism Theorem for Rings. Also known as the Fundamental Homomorphism Theorem
for rings. If ϕ : R → S is a ring homomorphism, then

R/ ker ϕ ∼= imϕ.

Example: Z/nZ ∼= Zn, since ϕ : Z → Zn defined by ϕ(x) = [x]n is an onto ring homomorphism
(check yourself) whose kernel is nZ (check).


