Math 151 - Important Ideas and Examples about Polynomials, Commutative Rings, and Fields

- 1. Important definitions and results pertaining to polynomials:
 - (a) A polynomial $p(x) \in F[x]$ is *irreducible over* F if it cannot be factored into polynomials in F[x] of strictly lower degree. Note that
 - i. Every non-zero polynomial over a field F can be factored as a constant polynomial times a polynomial of the same degree. For instance, $x^2 + 1 = 2 \cdot (\frac{1}{2}x^2 + \frac{1}{2})$. In order to be considered reducible, it must have an "interesting" factorization in the sense described above.
 - ii. It does not make sense to speak of a polynomial's irreducibility without specifying the field over which potential factorizations of the polynomial are being considered. For instance, $x^2 + 1$ is irreducible over \mathbb{Q} and \mathbb{R} , but not over \mathbb{C} .
 - (b) The greatest common divisor of f(x), $g(x) \in F[x]$ is the unique **monic** polynomial $d(x) \in F[x]$ of largest degree which divides both f(x) and g(x). Again, discussion of gcd must be given in terms of a ground field F.
 - (c) Rational Root Theorem. The polynomial must have **integer** coefficients. The theorem can find all possible rational roots.
 - (d) Eisenstein's irreducibility criterion. The polynomial must have **integer** coefficients. The criterion can decide if such a polynomial is irreducible over \mathbb{Q} .
 - (e) Being reducible over \mathbb{Q} is **not the same** as having roots in \mathbb{Q} , unless the polynomial is of degree 3 or less! For example, $x^4 + 2x^2 + 1 = (x^2 + 1)(x^2 + 1)$ is certainly reducible over \mathbb{Q} , but it has no rational roots. The following statements hold for $f(x) \in \mathbb{Q}[x]$:
 - f(x) has a root $c \in \mathbb{Q} \Rightarrow f(x)$ has a factor x c and is hence reducible over \mathbb{Q}
 - f(x) is irreducible over $\mathbb{Q} \Rightarrow f(x)$ has no rational roots

However, the converse statements are **false**:

- f(x) is reducible over $\mathbb{Q} \neq f(x)$ has a rational root
- f(x) has no roots in $\mathbb{Q} \not\Rightarrow f(x)$ is irreducible over \mathbb{Q}
- 2. A *field* is a set F equipped with two commutative binary operations, addition and multiplication, such that
 - (F, +) is an abelian group under addition
 - Every non-zero element of F has a multiplicative inverse (in the notation of #4, below, $F^* = F \setminus \{0_F\}$), and (F^*, \cdot) is an abelian group under multiplication
 - $0_F \neq 1_F$
 - The distributive law holds: (a+b)c = ac + bc for all $a, b, c \in F$.

Examples: \mathbb{Q} , \mathbb{R} , \mathbb{C} , \mathbb{Z}_p for p prime.

3. A *commutative ring* is just like a field, except that not every non-zero element need have a multiplicative inverse.

Examples: $\mathbb{Z}, \mathbb{Z}_n, F[x]$ for F a field. Any field is a commutative ring.

4. An element of a ring R with a multiplicative inverse in R is called a *unit*. The set of units of R, denoted R^* or R^{\times} , is a multiplicative group under the multiplication of R.

Examples: $\mathbb{Z}^* = \{\pm 1\} \cong \mathbb{Z}_2, \mathbb{Z}_n^* = \{[a]_n \in \mathbb{Z}_n \mid (a, n) = 1\}, F[x]^* = F^* = F \setminus \{0_F\}$ for F a field.

5. A zero-divisor of a ring R is a (non-zero) element $r \in R$ such that rs = 0 for some non-zero $s \in R$. In other words, it is something you can multiply with a non-zero element and still get 0. A commutative ring without zero-divisors is called an *integral domain*.

Examples of rings with zero-divisors: \mathbb{Z}_n for n not prime, e.g. in \mathbb{Z}_{24} , $[6] \cdot [8] = [0]$. A non-commutative example: $\mathbb{M}_2(\mathbb{Q})$, e.g.

$$\begin{bmatrix} 2 & -2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Handy fact: Any element that is a *unit* of a ring will never be a zero-divisor. For instance, notice that all the matrices in the above example are not invertible. <u>Exercise</u>: Prove this handy fact.

Examples of integral domains: any field (see #2, above), \mathbb{Z} , F[x] where F is any field

- 6. A ring homomorphism is a function $\varphi \colon R \to S$, where R and S are rings, such that for all a, $b \in R$,
 - $\varphi(a+b) = \varphi(a) + \varphi(b)$
 - $\varphi(ab) = \varphi(a)\varphi(b)$

Any ring homomorphism sends 0_R to 0_S . *However*, 1_R is **not** always sent to 1_S ! For example, recall the ring homomorphism $\varphi \colon \mathbb{Z}_8 \to \mathbb{Z}_{12}$ defined by $\varphi([x]_8) = [9x]_{12}$ discussed in class.

A ring isomorphism is a ring homomorphism as above which is also one-to-one and onto. If $\varphi: R \to S$ is a ring isomorphism, then we say R is isomorphic to S and we write $R \cong S$. In that case R and S are essentially the same ring in every way (they have the same addition and multiplication tables; if one is an integral domain, then so is the other, etc.). This is because any ring isomorphism sends units to units, zero-divisors to zero-divisors, and so on. Every property that an element in R has is sent to a corresponding element of S with that same property. In particular, 1_R is sent to 1_S .

7. An *ideal* I of a commutative ring R is a subset which is closed under + and - and under multiplication by things in R. We write $I \triangleleft R$.

Important Ideas and Examples:

(a) If $I \triangleleft R$ then $R/I := \{a + I \mid a \in R\}$ is a ring with operations

$$(a+I) + (b+I) = (a+b) + I$$

 $(a+I) \cdot (b+I) = (ab) + I.$

- (b) If $\varphi \colon R \to S$ is a ring homomorphism, then ker $\varphi \triangleleft R$ (note that ker φ is the set of things that get sent to 0_S under φ).
- (c) If $I \triangleleft R$ and $1_R \in I$, then I = R. <u>Proof.</u> $r \in R, 1_R \in I$ implies $r \cdot 1_R = r \in I$ by definition of ideal.
- (d) Corollary. A field has no interesting ideals. <u>Proof.</u> If $I \triangleleft F$ is non-zero, then let $a \neq 0$ in I. a is a unit since F is a field; hence $a^{-1} \in F$. Thus by definition of ideal, $a^{-1}a = 1 \in I$. By the above result, I = F.
- 8. First Isomorphism Theorem for Rings. Also known as the Fundamental Homomorphism Theorem for rings. If $\varphi: R \to S$ is a ring homomorphism, then

$$R/\ker\varphi \cong \mathrm{im}\varphi.$$

Example: $\mathbb{Z}/n\mathbb{Z} \cong \mathbb{Z}_n$, since $\varphi \colon \mathbb{Z} \to \mathbb{Z}_n$ defined by $\varphi(x) = [x]_n$ is an *onto* ring homomorphism (check yourself) whose kernel is $n\mathbb{Z}$ (check).