Math 151 - Important Ideas and Examples about Polynomials, Commutative Rings, and Fields

1. Important definitions and results pertaining to polynomials:
(a) A polynomial $p(x) \in F[x]$ is irreducible over F if it cannot be factored into polynomials in $F[x]$ of strictly lower degree. Note that
i. Every non-zero polynomial over a field F can be factored as a constant polynomial times a polynomial of the same degree. For instance, $x^{2}+1=2 \cdot\left(\frac{1}{2} x^{2}+\frac{1}{2}\right)$. In order to be considered reducible, it must have an "interesting" factorization in the sense described above.
ii. It does not make sense to speak of a polynomial's irreducibility without specifying the field over which potential factorizations of the polynomial are being considered. For instance, $x^{2}+1$ is irreducible over \mathbb{Q} and \mathbb{R}, but not over \mathbb{C}.
(b) The greatest common divisor of $f(x), g(x) \in F[x]$ is the unique monic polynomial $d(x) \in$ $F[x]$ of largest degree which divides both $f(x)$ and $g(x)$. Again, discussion of gcd must be given in terms of a ground field F.
(c) Rational Root Theorem. The polynomial must have integer coefficients. The theorem can find all possible rational roots.
(d) Eisenstein's irreducibility criterion. The polynomial must have integer coefficients. The criterion can decide if such a polynomial is irreducible over \mathbb{Q}.
(e) Being reducible over \mathbb{Q} is not the same as having roots in \mathbb{Q}, unless the polynomial is of degree 3 or less! For example, $x^{4}+2 x^{2}+1=\left(x^{2}+1\right)\left(x^{2}+1\right)$ is certainly reducible over \mathbb{Q}, but it has no rational roots. The following statements hold for $f(x) \in \mathbb{Q}[x]$:

- $f(x)$ has a root $c \in \mathbb{Q} \Rightarrow f(x)$ has a factor $x-c$ and is hence reducible over \mathbb{Q}
- $f(x)$ is irreducible over $\mathbb{Q} \Rightarrow f(x)$ has no rational roots

However, the converse statements are false:

- $f(x)$ is reducible over $\mathbb{Q} \nRightarrow f(x)$ has a rational root
- $f(x)$ has no roots in $\mathbb{Q} \nRightarrow f(x)$ is irreducible over \mathbb{Q}

2. A field is a set F equipped with two commutative binary operations, addition and multiplication, such that

- $(F,+)$ is an abelian group under addition
- Every non-zero element of F has a multiplicative inverse (in the notation of \#4, below, $F^{*}=F \backslash\left\{0_{F}\right\}$), and ($\left.F^{*}, \cdot\right)$ is an abelian group under multiplication
- $0_{F} \neq 1_{F}$
- The distributive law holds: $(a+b) c=a c+b c$ for all $a, b, c \in F$.

Examples: $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_{p}$ for p prime.
3. A commutative ring is just like a field, except that not every non-zero element need have a multiplicative inverse.
Examples: $\mathbb{Z}, \mathbb{Z}_{n}, F[x]$ for F a field. Any field is a commutative ring.
4. An element of a ring R with a multiplicative inverse in R is called a unit. The set of units of R, denoted R^{*} or R^{\times}, is a multiplicative group under the multiplication of R.
Examples: $\mathbb{Z}^{*}=\{ \pm 1\} \cong \mathbb{Z}_{2}, \mathbb{Z}_{n}^{*}=\left\{[a]_{n} \in \mathbb{Z}_{n} \mid(a, n)=1\right\}, F[x]^{*}=F^{*}=F \backslash\left\{0_{F}\right\}$ for F a field.
5. A zero-divisor of a ring R is a (non-zero) element $r \in R$ such that $r s=0$ for some non-zero $s \in R$. In other words, it is something you can multiply with a non-zero element and still get 0 . A commutative ring without zero-divisors is called an integral domain.
Examples of rings with zero-divisors: \mathbb{Z}_{n} for n not prime, e.g. in $\mathbb{Z}_{24},[6] \cdot[8]=[0]$. A non-commutative example: $\mathbb{M}_{2}(\mathbb{Q})$, e.g.

$$
\left[\begin{array}{ll}
2 & -2 \\
2 & -2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] .
$$

Handy fact: Any element that is a unit of a ring will never be a zero-divisor. For instance, notice that all the matrices in the above example are not invertible. Exercise: Prove this handy fact.
Examples of integral domains: any field (see \#2, above), $\mathbb{Z}, F[x]$ where F is any field
6. A ring homomorphism is a function $\varphi: R \rightarrow S$, where R and S are rings, such that for all a, $b \in R$,

- $\varphi(a+b)=\varphi(a)+\varphi(b)$
- $\varphi(a b)=\varphi(a) \varphi(b)$

Any ring homomorphism sends 0_{R} to 0_{S}. However, 1_{R} is not always sent to 1_{S} ! For example, recall the ring homomorphism $\varphi: \mathbb{Z}_{8} \rightarrow \mathbb{Z}_{12}$ defined by $\varphi\left([x]_{8}\right)=[9 x]_{12}$ discussed in class.
A ring isomorphism is a ring homomorphism as above which is also one-to-one and onto. If $\varphi: R \rightarrow S$ is a ring isomorphism, then we say R is isomorphic to S and we write $R \cong S$. In that case R and S are essentially the same ring in every way (they have the same addition and multiplication tables; if one is an integral domain, then so is the other, etc.). This is because any ring isomorphism sends units to units, zero-divisors to zero-divisors, and so on. Every property that an element in R has is sent to a corresponding element of S with that same property. In particular, 1_{R} is sent to 1_{S}.
7. An ideal I of a commutative ring R is a subset which is closed under + and - and under multiplication by things in R. We write $I \triangleleft R$.

Important Ideas and Examples:

(a) If $I \triangleleft R$ then $R / I:=\{a+I \mid a \in R\}$ is a ring with operations

$$
\begin{gathered}
(a+I)+(b+I)=(a+b)+I \\
(a+I) \cdot(b+I)=(a b)+I
\end{gathered}
$$

(b) If $\varphi: R \rightarrow S$ is a ring homomorphism, then $\operatorname{ker} \varphi \triangleleft R$ (note that $\operatorname{ker} \varphi$ is the set of things that get sent to 0_{S} under φ).
(c) If $I \triangleleft R$ and $1_{R} \in I$, then $I=R$.

Proof. $r \in R, 1_{R} \in I$ implies $r \cdot 1_{R}=r \in I$ by definition of ideal.
(d) Corollary. A field has no interesting ideals.

Proof. If $I \triangleleft F$ is non-zero, then let $a \neq 0$ in I. a is a unit since F is a field; hence $a^{-1} \in F$. Thus by definition of ideal, $a^{-1} a=1 \in I$. By the above result, $I=F$.
8. First Isomorphism Theorem for Rings. Also known as the Fundamental Homomorphism Theorem for rings. If $\varphi: R \rightarrow S$ is a ring homomorphism, then

$$
R / \operatorname{ker} \varphi \cong \operatorname{im} \varphi .
$$

Example: $\mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z}_{n}$, since $\varphi: \mathbb{Z} \rightarrow \mathbb{Z}_{n}$ defined by $\varphi(x)=[x]_{n}$ is an onto ring homomorphism (check yourself) whose kernel is $n \mathbb{Z}$ (check).

