English system formulas:	Metric system formulas:
1 ft . $=12 \mathrm{in}$.	$F=m \cdot a$
$5280 \mathrm{ft} .=1 \mathrm{mi}$.	$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
$16 \mathrm{oz} .=1 \mathrm{lb}$.	$100 \mathrm{~cm}=1 \mathrm{~m}$
Weight of water: $\omega=62.5 \mathrm{lb} . / \mathrm{ft}^{3}$	Weight of water: $\omega=9800 \mathrm{~N} / \mathrm{m}^{3}$
General formulas:	
Hooke's Law: $F(x)=k x$	
$W=\omega \int_{0}^{b}(x+P) A(x) d x$	

Multiple Choice. Circle the letter of the best answer.

1. $\int(\sin x+2 \cos x) d x=$
(a) $-\cos x+2 \sin x+C$
(d) $\cos x-2 \sin x$
(b) $-\cos x-2 \sin x+C$
(e) $-\cos x-2 \sin x$
(c) $\cos x+2 \sin x+C$

This is straight out of the formulas.
2. Suppose you know that $f^{\prime}(x)=g(x)$. Which of the following must be true?
(a) $\int g(x) d x=f(x)$
(d) $\frac{d}{d x}(g(x))=f(x)+C$
(b) $\int g(x) d x=f(x)+C$
(e) All of the above are true.
(c) $\frac{d}{d x}(g(x))=f(x)$

Antidifferentiation is the opposite of differentiation.
3. $\lim _{x \rightarrow-\infty} \frac{2 x^{5}-3 x^{3}+1}{-5 x^{3}+x-1}=$
(a) $-\frac{2}{5}$
(d) $-\infty$
(b) 0
(e) does not exist.
(c) ∞

Since the biggest power of x is in the numerator, we know the answer must be either ∞ or $-\infty$. To decide which one we use algebra, starting with multiplying the top and bottom by 1 over the biggest power of x occurring in the denominator:

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} \frac{2 x^{5}-3 x^{3}+1}{-5 x^{3}+x-1} & =\lim _{x \rightarrow-\infty} \frac{\left(2 x^{5}-3 x^{3}+1\right) \cdot \frac{1}{x^{3}}}{\left(-5 x^{3}+x-1\right) \cdot \frac{1}{x^{3}}} \\
& =\lim _{x \rightarrow-\infty} \frac{2 x^{2}-3+\frac{1}{x^{3}}}{-5+\frac{1}{x^{2}}-\frac{1}{x^{3}}} \\
& =\lim _{x \rightarrow-\infty} \frac{2 x^{2}-3}{-5} \\
" & =" \frac{2(-\infty)^{2}-3}{-5}=-\infty
\end{aligned}
$$

4. If $x<0$, then $x^{3}=$
(a) $\sqrt[4]{x^{6}}$
(d) $\sqrt[4]{x^{12}}$
(b) $\sqrt[4]{x^{8}}$
(e) $-\sqrt[4]{x^{12}}$
(c) $-\sqrt[4]{x^{8}}$

Just a reminder of the "awful truth." To test whether we need a minus sign for $x<0$, just plug in -1 and see if the statement holds. For instance, here we have

$$
(-1)^{3}=-1 \quad \neq \quad 1=\sqrt[4]{(-1)^{12}}
$$

So $x^{3} \neq \sqrt[4]{x^{12}}$ for $x<0$. We need an extra minus sign to make the statement true.
5. If $y=\int_{0}^{x^{2}} \tan t d t$, then $y^{\prime}=$
(a) $2 x \tan \left(x^{2}\right)$
(d) $2 x \sec ^{2}\left(x^{2}\right)$
(b) $\tan \left(x^{2}\right)$
(e) $\sec ^{2}\left(x^{2}\right)$
(c) $\tan x$

This is F.T.C. I, combined with the chain rule. The $2 x$ is the derivative of the "chunk" x^{2} 。
6. The inflection point(s) of the function $y=3 x^{5}-5 x^{4}+60 x-60$ is/are
(a) $(0,-60)$ only
(d) $(1,-2)$ only
(b) $(-1,-128)$ only
(e) $(0,-60),(1,-2)$, and $(-1,-128)$ only
(c) $(-1,-128)$ and $(1,-2)$ only

To get inflection points we take the second derivative and set it equal to 0 :

$$
\begin{gathered}
y^{\prime}=15 x^{4}-20 x^{3}+60 \\
y^{\prime \prime}=60 x^{3}-60 x^{2} \stackrel{\text { set }}{=} 0 \\
60 x^{2}(x-1)=0 \\
x=0 \quad, \quad x=1
\end{gathered}
$$

But wait! There are no answer choices that have $x=0$ and $x=1$ and nothing else. What gives?
This is a trick question, since the concavity must change for a point to be considered an inflection point. So we must test the concavity on either side of 0 and 1.

$$
\begin{gathered}
y^{\prime \prime}(-1)=-60-60<0 \\
y^{\prime \prime}\left(\frac{1}{2}\right)=\frac{60}{8}-\frac{60}{4}<0 \\
y^{\prime \prime}(2)=60 \cdot 8-60 \cdot 4>0
\end{gathered}
$$

These test points give the results shown below.

Looking at the number line we see that the graph is concave down on both sides of 0 , i.e. the concavity does not change. So $(0,-60)$ is not an inflection point. Here's what the graph looks like:

7. Which of the following is the linear approximation of the function $f(x)=\sqrt[3]{x}$ near the number $a=1$?
(a) $y=\frac{1}{3} x+1$
(d) $y=x+3$
(b) $y=\frac{1}{3} x+\frac{2}{3}$
(e) $y=3 x+2$
(c) $y=x-\frac{2}{3}$

This question is just asking for the equation of the tangent line to the graph of $f(x)$ at $x=1$. So we need the slope and a point on the line. We have $f^{\prime}(x)=\frac{1}{3} x^{-2 / 3}$, so the slope at $x=1$ is $f^{\prime}(1)=\frac{1}{3}$. Now the point of tangency is $(1,1)$ since $f(1)=\sqrt[3]{1}=1$. So using $y=m x+b$ we get

$$
\begin{aligned}
& 1=\frac{1}{3} \cdot(1)+b \\
& b=1-\frac{1}{3}=\frac{2}{3} .
\end{aligned}
$$

Therefore the equation of the line is $y=\frac{1}{3} x+\frac{2}{3}$
8. $\int_{0}^{4}|x-3| d x=$
(a) 24
(d) 20
(b) 2
(e) 5
(c) 4

We went over this question in class on Wednesday. Use areas.
9. Let \mathcal{R} be the region enclosed by the lines $y=2 x, y=4 x$, and $x=2$. The volume of the solid formed by rotating \mathcal{R} about the x-axis is
(a) $\pi \int_{0}^{2}\left((2 x)^{2}-(4 x)^{2}\right) d x$
(d) $\pi \int_{0}^{2}\left((4 x)^{2}-(2 x)^{2}\right) d x$
(b) $2 \pi \int_{0}^{8} x(2 x-4 x) d x$
(e) $\pi \int_{0}^{2}(4 x-2 x)^{2} d x$
(c) $2 \pi \int_{0}^{8} x(4 x-2 x) d x$

Since the region is formed from functions of x and is being rotated about a horizontal line, we use the disk method. The curves make a triangle, as shown.
The correct integral above just follows the formula for disks.

Fill-In.

1. $\lim _{x \rightarrow \infty} \frac{2 x^{3}-3 x^{2}+1}{4 x^{3}+2 x^{2}+x-1}=\underline{\frac{1}{2}}$.

Since the top and bottom have the same degree (biggest power of x), the limit at ∞ is

$$
\frac{\text { leading coefficient of top }}{\text { leading coefficient of bottom }}=\frac{2}{4}=\frac{1}{2}
$$

You can also use algebra similar to Multiple Choice \#3.
2. The vertical asymptote(s) for the function $f(x)=\frac{x}{x^{2}-1}$ is/are $\underline{x=1, x=-1}$ and the horizontal asymptote(s) is/are $\underline{y=0}$.

The denominator is 0 for $x=1$ and $x=-1$. Since the numerator is not also 0 for these x-values, there is a vertical asymptote at each of these places.

Since the degree of the bottom is bigger than the degree of the top, we have

$$
\lim _{x \rightarrow \pm \infty} \frac{x}{x^{2}-1}=0
$$

Therefore there is a horizontal asymptote at $y=0$.
3. The graph of the function $f(x)=x^{4}+2 x^{3}$ is increasing on the interval(s) $\left(-\frac{3}{2}, 0\right),(0, \infty)$.

To check for increasing/decreasing we take the first derivative: $f^{\prime}(x)=4 x^{3}+6 x^{2}$. First, set it equal to 0 to find the critical numbers:

$$
\begin{gathered}
4 x^{3}+6 x^{2} \stackrel{\text { set }}{=} 0 \\
2 x^{2}(2 x+3)=0 \\
x=0 \quad, \quad x=-\frac{3}{2} .
\end{gathered}
$$

Since the domain of $f^{\prime}(x)$ is all real numbers, there are no "weird" critical numbers (numbers in the domain of $f(x)$ but not in the domain of $\left.f^{\prime}(x)\right)$. So we set up a number line and check in between the above x-values:

Looking at the number line we see that the graph is increasing on the intervals $\left(-\frac{3}{2}, 0\right)$ and $(0, \infty)$.
4. According to Rolle's Theorem, the maximum number of real roots of the function $f(x)=$ $4 x^{5}+2 x-3$ is 1 .

According to Rolle's Theorem there is at most one more root than the number of solutions to the equation $f^{\prime}(x)=0$. We have $f^{\prime}(x)=20 x^{4}+2 \stackrel{\text { set }}{=} 0 \Rightarrow$ no solutions! So there is at most 1 real root.
5. Given the initial guess $x_{1}=2$, the second approximation to a root of $g(x)=x^{3}-4 x-1$ using Newton's Method is $x_{2}=\underline{\frac{17}{8}}$.

We have $g^{\prime}(x)=3 x^{2}-4$, so $x_{2}=2-\frac{g(2)}{g^{\prime}(2)}=2-\frac{2^{3}-4 \cdot 2-1}{3 \cdot 2^{2}-4}=2-\frac{-1}{8}=\frac{17}{8}$.

Graphs. More accuracy = more points!

1. For the function $f(x)=\frac{1}{3} x^{3}-2 x$,
(a) find the critical points and intervals of increase/decrease

We have

$$
\begin{gathered}
f^{\prime}(x)=x^{2}-2 \stackrel{\text { set }}{=} 0 \\
x^{2}=2 \\
x= \pm \sqrt{2} .
\end{gathered}
$$

The domain of $f^{\prime}(x)$ is all real numbers, so $\sqrt{2}$ and $-\sqrt{2}$ are the only critical numbers. $f(\sqrt{2})=\frac{1}{3}(\sqrt{2})^{3}-2 \sqrt{2}=2 \sqrt{2}\left(\frac{1}{3}-1\right)=-\frac{4 \sqrt{2}}{3} . f(x)$ is an odd function (see part (c)), so we know that $f(-\sqrt{2})=\frac{4 \sqrt{2}}{3}$. Therefore the critical points are

$$
\left(\sqrt{2},-\frac{4 \sqrt{2}}{3}\right),\left(-\sqrt{2}, \frac{4 \sqrt{2}}{3}\right) .
$$

Now we set up a number line to find the intervals of increase and decrease:

$f(x)$ is increasing on $(-\infty,-\sqrt{2})$ and $(\sqrt{2}, \infty)$ and decreasing on $(-\sqrt{2}, \sqrt{2})$.
(b) find the inflection points and intervals of concave up/concave down

We repeat the process above for $f^{\prime \prime}(x)$: We have

$$
f^{\prime \prime}(x)=2 x \stackrel{\text { set }}{=} 0 \Rightarrow x=0 .
$$

$f(0)=0$, so $(0,0)$ is a potential inflection point.
Since $f^{\prime \prime}(-1)=-2<0, f(x)$ is concave down for $x<0$. Since $f(x)$ is an odd function (see part (c)), we know $f(x)$ is concave up for $x>0$. Therefore (0,0) is an inflection point, and $f(x)$ is concave down on $(-\infty, 0)$ and concave up on $(0, \infty)$.
(c) discuss any symmetry $f(x)$ may or may not have
$f(-x)=\frac{1}{3}(-x)^{3}-2(-x)=-\frac{1}{3} x^{3}+2 x=-\left(\frac{1}{3} x^{3}-2 x\right)=-f(x)$, so $f(x)$ is an odd
function (symmetric about the origin).
(d) find the equations of any vertical and/or horizontal asymptotes

There are no vertical or horizontal asymptotes since $f(x)$ is a polynomial.
(e) find the y-intercept
$f(0)=0$, so the y-intercept is $(0,0)$.
(f) On the axes at right, sketch an accurate graph of $f(x)$.

2. (a) For the function $f(x)$ graphed at right, sketch a rectangle on the same axes whose area is approximately $\int_{1}^{5} f(x) d x$.
(b) The average value $f_{\text {ave }}$ of $f(x)$ from $x=1$ to $x=5$ is approximately 11.5 .

(c) The approximate value(s) of c so that $f(c)=f_{\text {ave }}$ is/are $\underline{2.2}$ (list all values).

Work and Answer. You must show all relevant work to receive full credit.

1. Evaluate $\int_{-1}^{2}\left(x^{2}+2\right) d x$.

We have

$$
\begin{aligned}
\int_{-1}^{2}\left(x^{2}+2\right) d x & =\frac{1}{3} x^{3}+\left.2 x\right|_{-1} ^{2} \\
& =\left(\frac{1}{3} \cdot 2^{3}+2 \cdot 2\right)-\left(\frac{1}{3}(-1)^{3}+2(-1)\right) \\
& =\frac{8}{3}+4+\frac{1}{3}+2=3+4+2=9
\end{aligned}
$$

2. Evaluate $\int x\left(3 x^{2}+1\right)^{5} d x$.

Let $u=3 x^{2}+1$. Then $d u=6 x d x$. Futzing the 6 , we get

$$
\begin{aligned}
\int x\left(3 x^{2}+1\right)^{5} d x & =\frac{1}{6} \int 6 x\left(3 x^{2}+1\right)^{5} d x \\
& =\frac{1}{6} \int u^{5} d u \\
& =\frac{1}{6} \cdot \frac{1}{6} u^{6}+C \\
& =\frac{1}{36}\left(3 x^{2}+1\right)^{6}+C
\end{aligned}
$$

3. A farmer has 400 meters of fencing with which to fence 3 sides of a rectangular horse corral. What is the maximum area she can enclose?

The objective of this problem is to maximize the area. Let x be the width and y the length of the corral. A formula for the area, then, is $A=x y$. We know $2 x+y=400$, so $y=400-2 x$. Therefore the area, in terms of x, is

$$
A(x)=x(400-2 x)=400 x-2 x^{2}
$$

Now we find where the absolute maximum of the area function is:

$$
\begin{gathered}
A^{\prime}(x)=400-4 x \stackrel{\text { set }}{=} 0 \\
4 x=400 \\
x=100
\end{gathered}
$$

The area is maximized at $x=100$. The problem asks for the maximum area, so we plug in 100: $A(100)=100(400-2 \cdot 100)=100(200)=20,000 \mathrm{~m}^{2}$
4. Find the area of the region enclosed by the curves $y=4-x^{2}$ and $y=x+2$.

First find where the curves intersect:

$$
\begin{gathered}
4-x^{2} \stackrel{\text { set }}{=} x+2 \\
x^{2}+x-2=0 \\
(x-1)(x+2)=0 \\
x=1 \quad, \quad x=-2 .
\end{gathered}
$$

You should graph the two curves to see which curve is on top. Or plug in any number between -2 and 1, such as $0: 4-x^{2}$ comes out more than $x+2\left(4-0^{2}=4>2=0+2\right)$. So $4-x^{2}$ is on top. Therefore the area is

$$
\begin{aligned}
\int_{-2}^{1}\left(\left(4-x^{2}\right)-(x+2)\right) d x & =\int_{-2}^{1}\left(2-x-x^{2}\right) d x \\
& =2 x-\frac{1}{2} x^{2}-\left.\frac{1}{3} x^{3}\right|_{-2} ^{1} \\
& =\left(2-\frac{1}{2}-\frac{1}{3}\right)-\left(-4-2+\frac{8}{3}\right)=\frac{9}{2}
\end{aligned}
$$

5. Evaluate $\int_{0}^{1} x \cos \left(x^{2}+1\right) d x$.

Let $u=x^{2}+1$. Then $d u=2 x d x$. Also the new limits become

$$
\begin{array}{ll}
1: & u=1^{2}+1=2 \\
0: & u=0^{2}+1=1 .
\end{array}
$$

Therefore we have

$$
\begin{aligned}
\int_{0}^{1} x \cos \left(x^{2}+1\right) d x & =\frac{1}{2} \int_{0}^{1} 2 x \cos \left(x^{2}+1\right) d x \\
& =\frac{1}{2} \int_{1}^{2} \cos u d u=\left.\frac{1}{2} \sin u\right|_{1} ^{2} \\
& =\frac{1}{2}(\sin (2)-\sin (1))
\end{aligned}
$$

6. Let \mathcal{R} be the region enclosed by the graphs of $y=x^{2}$, the x-axis, and $x=3$. Find the volume of the solid formed by rotating \mathcal{R} about the y-axis.

The region \mathcal{R} is formed with functions of x, and we are rotating about a vertical axis, so we use the shell method.

The region is graphed at right. We have $r=x$ and $h=x^{2}-0=x^{2}$, so we get

$$
\begin{aligned}
V & =2 \pi \int_{0}^{3} x \cdot x^{2} d x \\
& =2 \pi \int_{0}^{3} x^{3} d x=\left.2 \pi \cdot \frac{1}{4} x^{4}\right|_{0} ^{3} \\
& =\frac{\pi}{2} \cdot 3^{4}=\frac{81 \pi}{2}
\end{aligned}
$$

7. If 9 J of work are required to stretch a spring 75 cm beyond its natural length, find the work done in stretching the spring from 75 cm to 1 m beyond its natural length.

The formula for the work done in stretching a spring $75 \mathrm{~cm}\left(=\frac{3}{4} \mathrm{~m}\right)$ beyond its natural length is

$$
\int_{0}^{3 / 4} k x d x=\left.\frac{k}{2} x^{2}\right|_{0} ^{3 / 4}=\frac{k}{2}\left(\frac{3}{4}\right)^{2}=\frac{9 k}{32}
$$

(using Hooke's Law). The problem says that this is equal to 9 J . So we set $\frac{9 k}{32}=9$ and solve for k to get $\frac{k}{32}=1 \Rightarrow k=32$. Now we can answer the question in the problem. The work done in stretching the spring from $\frac{3}{4} \mathrm{~m}$ to 1 m beyond the natural length is

$$
\begin{aligned}
\int_{3 / 4}^{1} 32 x d x & =\left.16 x^{2}\right|_{3 / 4} ^{1} \\
& =16\left(1-\left(\frac{3}{4}\right)^{2}\right) \\
& =16\left(1-\frac{9}{16}\right)=16 \cdot \frac{7}{16}=7 \mathrm{~J}
\end{aligned}
$$

