Math 75B Worksheet - Exploring Horizontal Asymptotes

Recall that the graph of $f(x)=\frac{1}{x}$ looks like \longrightarrow

1. Draw graphs of each of the following functions:
(a) $g(x)=\frac{1}{x}+3$
(b) $h(x)=\frac{3}{x-2}$
(c) $k(x)=-\frac{3}{x+1}+4$
2. Turn to section 5-A. 1 (Ebersole) for a review of horizontal asymptotes, if you need to.
(a) Does $f(x)$ have a horizontal asymptote? If so, where? (Your answer should look like " $y=$ \qquad ".)
(b) Answer the above question for $g(x), h(x)$, and $k(x)$ as in $\# 1$.
3. Recall that $\lim _{x \rightarrow a} f(x)=L$ means that as x gets close to a, the y-value of $f(x)$ tries to get to L. Looking at the graphs of $f(x), g(x), h(x)$, and $k(x)$,
(a) What do you think should be the answer to $\lim _{x \rightarrow \infty}\left(\frac{1}{x}\right)$?
(b) Find $\lim _{x \rightarrow \infty}\left(\frac{1}{x}+3\right), \lim _{x \rightarrow \infty}\left(\frac{3}{x-2}\right)$, and $\lim _{x \rightarrow \infty}\left(-\frac{3}{x+1}+4\right)$.
(c) Do the answers change if ∞ is replaced by $-\infty$?
(d) What is the connection between these "limits at infinity" and horizontal asymptotes? Answer as completely and articulately as you can.
