Worksheet - Techniques of Integration Necessary for Section 7.4

1. $\int \frac{1}{2 x-1} d x$.

Hint: Let $u=2 x-1$.

Moral. You can integrate anything that looks like $\frac{\text { constant }}{\text { linear }}$!
2. $\int \frac{2 x-5}{\left(x^{2}-5 x\right)^{3}} d x$.

Hint: Let $u=x^{2}-5 x$.

Moral: Always check to see if you can use u-substitution before trying anything fancy!
3. $\int \frac{4 x-1}{x^{2}+5} d x$.

Hint: Split up the fraction, then use u-substitution (with $u=x^{2}+5$) on one term and the following formula on the other:

$$
\int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C .
$$

Moral: You can integrate anything that looks like $\frac{\text { linear }}{\mathrm{x}^{2}+\mathrm{a}^{2}}$!

Worksheet - Techniques of Integration Necessary for Section 7.4
4. $\int \frac{3 x-1}{x^{2}+6 x+11} d x$.

Hint: Complete the square in the denominator, i.e. $x^{2}+6 x+11=x^{2}+6 x+9+2=(x+3)^{2}+2$. Then let $u=x+3$, and apply the technique in problem 3 , above.

Moral: You can integrate anything that looks like $\frac{\text { linear }}{\text { quadratic }}$!
5. $\int \frac{x^{3}-3 x^{2}+1}{x^{2}+1} d x$.

Hint: Perform polynomial division.
Recall: to do long division we get the answer one digit at a time, then multiply, subtract, and get the remainder. Then the answer is (quotient) $+\frac{(\text { remainder })}{(\text { divisor })}$.
Example: 1650 divided by 38 is $43 \frac{16}{38}$.
To do polynomial division, we do a very similar process with polynomials. Remember to write the terms in descending order by powers, and insert 0 coefficients for missing powers. In other words, the first step should look like

$$
\begin{array}{l|l}
x^{2}+0 x+1 & \overline{x^{3}-3 x^{2}+0 x+1}
\end{array}
$$

Then the answer should be a polynomial (the quotient) plus a proper rational function (the remainder over $x^{2}+1$).
Check to make sure you get $x-3+\frac{-x+4}{x^{2}+1}$. Integrate.

Moral: When the integrand is an improper rational function, perform polynomial division to rewrite the quotient as a polynomial plus a proper rational function, then apply the previous techniques.

