Worksheet - Techniques of Integration Necessary for Section 7.4

1. $\int \frac{1}{2x-1} dx$. *Hint*: Let u = 2x - 1.

Moral. You can integrate anything that looks like $\frac{\text{constant}}{\text{linear}}$!

2. $\int \frac{2x-5}{(x^2-5x)^3} dx$. Hint: Let $u = x^2 - 5x$.

Moral: Always check to see if you can use *u*-substitution before trying anything fancy!

3. $\int \frac{4x-1}{x^2+5} dx.$

Hint: Split up the fraction, then use *u*-substitution (with $u = x^2 + 5$) on one term and the following formula on the other:

$$\int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) + C.$$

Moral: You can integrate anything that looks like $\frac{\text{linear}}{x^2+a^2}$!

Worksheet - Techniques of Integration Necessary for Section 7.4

4. $\int \frac{3x-1}{x^2+6x+11} dx.$

Hint: Complete the square in the denominator, *i.e.* $x^2 + 6x + 11 = x^2 + 6x + 9 + 2 = (x+3)^2 + 2$. Then let u = x + 3, and apply the technique in problem 3, above.

Moral: You can integrate anything that looks like $\frac{\text{linear}}{\text{quadratic}}$!

5. $\int \frac{x^3 - 3x^2 + 1}{x^2 + 1} dx.$

Hint: Perform **polynomial division**.

Recall: to do long division we get the answer one digit at a time, then multiply, subtract, and get the remainder. Then the answer is $(quotient) + \frac{(remainder)}{(divisor)}$.

Example: 1650 divided by 38 is $43\frac{16}{38}$.

To do polynomial division, we do a very similar process with polynomials. Remember to write the terms in descending order by powers, and insert 0 coefficients for missing powers. In other words, the first step should look like

$$x^2 + 0x + 1$$
 | $x^3 - 3x^2 + 0x + 1$

Then the answer should be a polynomial (the quotient) plus a proper rational function (the remainder over $x^2 + 1$).

Check to make sure you get $x - 3 + \frac{-x+4}{x^2+1}$. Integrate.

Moral: When the integrand is an *improper* rational function, perform polynomial division to rewrite the quotient as a polynomial plus a *proper* rational function, then apply the previous techniques.