
Math 76 Practice Problems for Midterm III - Solutions
Chapter 11

DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in
length or content, to the actual exam. You may expect to see problems on the test that are not
exactly like problems you have seen before.

Multiple Choice. Circle the letter of the best answer.

1. The nth term of the sequence {−3, 4, 11, 18, 25, . . .}, counting a1 = −3 as the first term, is

(a) an = 5n− 2

(b) an = 7n− 10

(c) an = n2 − 4

(d) an = −3n + 7

This is an arithmetic sequence with a common difference of 7, so only (b) can be correct.
Sure enough, when n = 1, a1 = 7n− 10 = 7− 10 = −3.

2.
∞∑

n=1

3
(

1
2

)n
=

(a) 6

(b) 3

(c)
3

2

(d) ∞ (diverges)

This is a geometric series with r =
1

2
, so it converges. But take care! The sum is

∞∑
n=1

3
(

1
2

)n
=

3

1− 1
2

− 3 = 6− 3 = 3 since the sum starts from n = 1, not n = 0.

3. The series
∞∑

n=1

2

3n+2

(a) converges to
8

9

(b) converges to
1

9

(c) converges to 3

(d) converges to 9

This is a geometric series. There are several ways to get it into a form that fits the formula.
Here are two:

Solution 1.

We have
∞∑

n=1

2

3n+2
=

∞∑
n=3

2

3n
.
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This is exactly in the form we want it, but there are three terms “missing.” (The

formula
a

1− r
works when the series starts from n = 0, but this one starts at n = 3.)

So we take
a

1− r
and subtract off the terms corresponding to n = 0, n = 1, and

n = 2. We get
2

1− 1
3

− 2− 2

3
− 2

9
= 3− 2− 2

3
− 2

9
=

1

9
.

Solution 2.

We have
∞∑

n=1

2

3n+2
=

∞∑
n=0

2

3n+3
=

∞∑
n=0

2

33

(
1

3

)n

=
2
27

1− 1
3

=
1

9
.

4.
∞∑

n=3

(
2

n
− 2

n + 1

)
=

(a) 0

(b)
1

6

(c)
2

3

(d) ∞ (diverges)

This is a telescoping series. The n-th partial sum is

sn =

(
2

3
− 2

4

)
+

(
2

4
− 2

5

)
+

(
2

5
− 2

6

)
+ . . . +

(
2

n
− 2

n + 1

)
=

2

3
− 2

n + 1
,

whose limit as n →∞ is
2

3
.

5. To determine whether or not the series
∞∑

n=2

5n3

1− 2n + n4
converges, the limit comparison

test may be used with comparison series
∑

bn =

(a)
∑ 1

n

(b)
∑

5n3

(c)
∑ 5

n4

(d) none; the limit comparison test cannot be used

The degree of the denominator of an =
5n3

1− 2n + n4
is one more than the degree of the

numerator. So the best comparison term is bn =
1

n
. To check, note that the limit of an

bn
is

finite and positive, since

lim
n→∞

5n3

1−2n+n4

1
n

= lim
n→∞

5n3

1− 2n + n4
· n

1

= lim
n→∞

5n4

1− 2n + n4
= 5.
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6. The series
∞∑

n=1

(−1)n−1

√
n

n2 − 4
√

n− 1

(a) converges absolutely (AC)

(b) converges conditionally (CC)

(c) diverges

Since the biggest power on the bottom is n2 and the biggest power on the top is n1/2, the
difference in the powers is greater than 1 (2− 1

2
= 3

2
). Thus the series converges absolutely

(AC) by the limit comparison test, using bn =
1

n3/2
.

Here is a more detailed solution:

Try for AC: look at the series
∞∑

n=1

√
n

n2 − 4
√

n− 1
. The terms an of this series are positive,

at least from some point on. So we may use the limit comparison test. Let bn =
1

n3/2
. We

have

lim
n→∞

an

bn

= lim
n→∞

n1/2

n2 − 4n1/2 − 1
· n3/2

1

= lim
n→∞

n2

n2 − 4n1/2 − 1
= 1,

a finite positive limit. Therefore we are using the right bn for the limit comparison test.

Since
∑

bn converges (it is a p-series with p = 3
2
), our series also converges. In other

words, the original series
∞∑

n=1

(−1)n−1

√
n

n2 − 4
√

n− 1
converges absolutely (AC).

7. The series
∞∑

n=1

(−1)n−1

√
n

n− 4
√

n− 1

(a) converges absolutely (AC)

(b) converges conditionally (CC)

(c) diverges

Here the difference in the powers is less than 1 (1− 1
2

= 1
2
). Thus the series will not

converge absolutely. However, it will still converge (conditionally), by the alternating
series test: we have

• Let f(x) =

√
x

x− 4
√

x− 1
. Then

f ′(x) =

1
2
√

x
(x− 4

√
x− 1)−

√
x(1− 2√

x
)

(x− 4
√

x− 1)2
= −

1
2

(√
x + 1√

x

)
(x− 4

√
x− 1)2

< 0

(I skipped a lot of algebra here; you can check my work). Therefore the terms are
decreasing.
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• lim
n→∞

√
n

n− 4
√

n− 1
= 0 since the power on the bottom is bigger than the power on

the top.

8. The series
∞∑

n=0

(−1)n 10n

7n!

(a) converges absolutely (AC)

(b) converges conditionally (CC)

(c) diverges

Using the ratio test we get

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

10n+1

7(n + 1)!
· 7n!

10n

= lim
n→∞

10

n + 1
= 0 < 1.

Therefore the series is AC.

9. The series
∞∑

n=2

(
2n2 + 1

n2 + 5n− 6

)n

(a) converges absolutely (AC)

(b) converges conditionally (CC)

(c) diverges

Using the root test we get

lim
n→∞

n
√
|an| = lim

n→∞
n

√(
2n2 + 1

n2 + 5n− 6

)n

= lim
n→∞

2n2 + 1

n2 + 5n− 6
= 2 > 1.

Therefore the series diverges.

10. The interval of convergence of the power series
∞∑

n=1

1

n
(x− 1)n is

(a) [0, 1]

(b) (0, 1)

(c) (0, 2]

(d) [0, 2)

Since the power series is centered at x = 1, we can see immediately that the answer must
be either (c) or (d) (You can also check this using the ratio test).
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Now we check the endpoints: at x = 0 we have
∞∑

n=1

(−1)n 1

n
which converges by the

alternating series test. At x = 2 we have
∞∑

n=1

1

n
which diverges by the p-series test.

11. A power series representation for the function f(x) =
3

4− x
is

(a)
∞∑

n=0

3

4
xn

(b)
∞∑

n=0

(
3

4

)n+1

xn

(c)
∞∑

n=0

3

4n+1
xn

(d)
∞∑

n=0

3(4− x)n

We have

3

4− x
=

3

4
(
1− 1

4
x
) =

3
4

1− 1
4
x

=
∞∑

n=0

3

4

(
1

4
x

)n

=
∞∑

n=0

3

4n+1
xn.

12. The Maclaurin series for the function f(x) = x3 cos(4x2) is

(a)
∞∑

n=0

(−16)n

(2n)!
x4n+3

(b)
∞∑

n=0

(−1)n

(2n)!
x2n+3

(c)
∞∑

n=0

(−1)n

n!
(4x2)n

(d)
∞∑

n=0

(−1)n

(2n + 1)!
x4n2+3

Recall that the Maclaurin series for cos(x) is
∞∑

n=0

(−1)n

(2n)!
x2n, for all x. Therefore for cos(4x2)

it is
∞∑

n=0

(−1)n

(2n)!
(4x2)2n. Finally, for x3 cos(4x2) it is

x3

∞∑
n=0

(−1)n

(2n)!
(4x2)2n = x3

∞∑
n=0

(−1)n42nx4n

(2n)!
=

∞∑
n=0

(−16)n

(2n)!
x4n+3.

13. The Maclaurin series for the function f(x) =
√

3− x is

(a)
∞∑

n=0

(
−1

2

n

)
1

3n
xn

(b)
∞∑

n=0

(
1
2

n

)√
3

(
−1

3

)n

xn

(c)
∞∑

n=0

(
1
3

n

)
xn

(d)
∞∑

n=0

(
n
1
2

)
(−1)n

3n
xn
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We have

√
3− x =

√
3

√
1− x

3
=
√

3
(
1− x

3

)1/2

=
√

3
∞∑

n=0

(
1
2

n

)(
−x

3

)n

=
∞∑

n=0

(
1
2

n

)√
3

(
−1

3

)n

xn.

Fill-In.

1. Circle the best answer. On the line, indicate one valid test that can be applied to get your
answer. You may choose from the following list:

• divergence test

• p-series test

• geometric series test

• integral test

• direct comparison test

• limit comparison test

• alternating series test
• ratio test
• root test

(a)
∞∑

n=1

500

n2
( converges | diverges )

Test: p-series test, integral test, limit comparison test

(b)
∞∑

n=1

(−1)n n− 5

3n
( converges | diverges ) Test: divergence test

(c)
∞∑

n=1

3
√

n

n2 − 3n + 1
( converges | diverges )

Test: limit comparison test, integral test

(d)
∞∑

n=1

cos(nπ)

tan−1(n)
( converges | diverges ) Test: divergence test

(e)
∞∑

n=1

10n

(5n)!
( converges | diverges ) Test: ratio test

2.
∞∑

n=1

5n

n2 + 1
(x + 3)n−1 is a power series centered at −3 .

A power series of the form
∞∑

n=?

cn(x− a)n is centered at a. Here we have a = −3.

3. The radius of convergence of the power series
∞∑

n=1

(−1)n

√
n

xn is 1 .

Using the ratio test, we have

lim
n→∞

∣∣∣∣ xn+1

√
n + 1

·
√

n

xn

∣∣∣∣ = lim
n→∞

√
n√

n + 1
|x|

= |x|
set
< 1.
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Therefore the radius of convergence is R = 1.

4. A power series representation of 6 tan−1(x2) is
∞∑

n=0

6(−1)n

2n + 1
x4n+2 .

There are three ways to solve this problem:

(a) Differentiate and integrate.

The derivative of 6 tan−1(x2) is
12x

1 + x4
=

∞∑
n=0

12x(−x4)n =
∞∑

n=0

12(−1)nx4n+1; thus

6 tan−1(x2) =
∞∑

n=0

12(−1)n

4n + 2
x4n+2 + C =

∞∑
n=0

6(−1)n

2n + 1
x4n+2 + C. Finally, plugging in

x = 0, we see that C = 0.

(b) Modify the power series for tan−1(x).

If you have memorized the Maclaurin series expansion for tan−1(x), you can plug in
x2 for x and multiply the whole thing by 6. We have

tan−1(x) =
∞∑

n=0

(−1)n

2n + 1
x2n+1

so

6 tan−1(x2) = 6
∞∑

n=0

(−1)n

2n + 1
(x2)2n+1 =

∞∑
n=0

6(−1)n

2n + 1
x4n+2.

(c) Find the Maclaurin series by hand (difficult).

Take successive derivatives of f(x) = 6 tan−1(x2) and try to get a formula for f (n)(0).
This takes a huge amount of time and is not recommended!

5. The Maclaurin series of cos(3x) is
∞∑

n=0

(−9)n

(2n)!
x2n .

The Maclaurin series of cos x (which you should memorize) is
∞∑

n=0

(−1)n

(2n)!
x2n. Therefore

the Maclaurin series of cos(3x) is
∞∑

n=0

(−1)n

(2n)!
(3x)2n =

∞∑
n=0

(−9)n

(2n)!
x2n.

6. The Taylor series of cos(3x) centered at π is −
∞∑

n=0

(−9)n

(2n)!
(x− π)2n .

We don’t have any Taylor series not centered at 0 memorized (at least I don’t!), so this
one we have to do from scratch. We have
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n f (k)(x) f (k)(π)
0 cos(3x) −1
1 −3 sin(3x) 0
2 −32 cos(3x) 32

3 33 sin(3x) 0
4 34 cos(3x) −34

5 −35 sin(3x) 0
6 −36 cos(3x) 36

We are starting to see the pattern. When k is odd, f (k)(π) = 0. When k is even,

f (k)(π) = (−1)n−13k. So let k = 2n; then we get cos(3x) =
∞∑

n=0

(−1)n−132n

(2n)!
(x − π)2n =

−
∞∑

n=0

(−9)n

(2n)!
(x − π)2n (notice the extra minus sign to make the simplification come out

right. No, you don’t have to simplify on the test!).

7.

(
7

3

)
= 35 .

The seventh row of Pascal’s triangle is

1 7 21 35 35 21 7 1

so

(
7

3

)
= 35. Alternatively, the formula for

(
7

3

)
is

7!

4!3!
=

7 · 6 · 5
3 · 2

= 35.

8.

(
4
3

5

)
= − 8

36
.

We have (
4
3

5

)
=

(
4
3

) (
1
3

) (
−2

3

)
· · ·
(

4
3
− 5 + 1

)
5!

=

(
4
3

) (
1
3

) (
−2

3

) (
−5

3

) (
−8

3

)
5!

= −4 · 2 · 5 · 8
35 · 5!

= − 8

36
.

Work and Answer. You must show all relevant work to receive full credit.

1. For the sequence {2,−4

3
,
8

9
,−16

27
, . . .},

(a) Find a formula for the n-th term an of the sequence, assuming a0 = 2.

We make the following observations:

(i) The sequence is alternating, so there is a (−1)ξ in the formula.

(ii) The numerators are proceeding by powers of 2, so there is a 2♠ in the numerator
of the formula.
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(iii) The denominators are proceeding by powers of 3, so there is a 3♣ in the denom-
inator of the formula.

We have a0 = 2 = +
21

30
, so the formula for an is an = (−1)n 2n+1

3n

(b) Circle the best answer. The sequence {an}∞n=0 above ( converges | diverges ).

lim
n→∞

an = lim
n→∞

2 ·
(

2

3

)n

= 0. So the sequence converges to 0.

2. Find the sum of the series
∞∑

n=−1

2 · 3n

4n−1
.

This is a geometric series after some manipulation. Note that

∞∑
n=−1

2 · 3n

4n−1
=

∞∑
n=−2

2 · 3n+1

4n
=

∞∑
n=−2

6 · 3n

4n
=

∞∑
n=−2

6 ·
(

3

4

)n

=
6

1− 3
4

+ 6 ·
(

3

4

)−1

+ 6 ·
(

3

4

)−2

= 24 + 6

(
4

3

)
+ 6

(
16

9

)
=

128

3

3. Find the sum of the series
∞∑

n=2

n + 1

n3 − n
.

This is a telescoping series after some manipulation. Note that

∞∑
n=2

n + 1

n3 − n
=

∞∑
n=2

n + 1

n(n + 1)(n− 1)

=
∞∑

n=2

1

n(n− 1)
=

∞∑
n=2

(
1

n− 1
− 1

n

)
(using partial fractions). Therefore

sn =

(
1− 1

2

)
+

(
1

2
− 1

3

)
+ . . . +

(
1

n− 1
− 1

n

)
= 1− 1

n

which approaches 1 as n →∞. Therefore the sum of the series is 1
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4. Determine whether the series
∞∑

n=1

3n sin n

n!
is absolutely convergent (AC), conditionally

convergent (CC), or divergent.

Try for AC: we want to check whether or not
∞∑

n=1

∣∣∣∣3n sin n

n!

∣∣∣∣ converges or not. We have

∣∣∣∣3n sin n

n!

∣∣∣∣ =
3n| sin n|

n!
≤ 3n

n!

since | sin n| ≤ 1 for all n. We are attempting to use the direct comparison test — however,

we need another test to determine whether or not
∑ 3n

n!
converges. You can check using

the ratio test that
∞∑

n=1

3n

n!
does converge. Therefore

∞∑
n=1

∣∣∣∣3n sin n

n!

∣∣∣∣ also converges, and hence

the original series converges absolutely (AC)

5. (a) Find a power series representation for the function f(x) = ln(2 + 3x).

There are two ways to do this problem. One is to use §11.10 and find, say, the Maclau-
rin series for f(x). This is quite difficult, however. Here’s the way I recommend:

Use §11.9 and recognize that f ′(x) =
3

2 + 3x
=

3
2

1−
(
−3

2
x
) , which is the sum

∞∑
n=0

3

2

(
−3

2
x

)n

=
∞∑

n=0

(−1)n · 3n+1

2n+1
xn,

and therefore f(x) is equal to an antiderivative of this sum: we get

ln(2 + 3x) =
∞∑

n=0

(−1)n · 3n+1

(n + 1)2n+1
xn+1 + C =

∞∑
n=1

(−1)n−1 · 3n

n · 2n
xn + C.

Plugging in x = 0 we see that ln(2 + 3(0)) = ln 2 = C. Therefore we have

ln(2 + 3x) = ln 2 +
∞∑

n=1

(−1)n−1 · 3n

n · 2n
xn

(b) Find the interval of convergence.

Using the ratio test, we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ 3n+1xn+1

(n + 1)2n+1
· n · 2n

3nxn

∣∣∣∣
= lim

n→∞

3n

2(n + 1)
|x| = 3

2
|x|

set
< 1
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So |x| < 2

3
. It remains to check the endpoints.

When x =
2

3
we have

∞∑
n=1

(−1)n−1 · 3n

n · 2n

(
2

3

)n

(the (ln 2) at the beginning won’t affect

whether the series converges or not), which equals
∞∑

n=1

(−1)n−1

n
. This converges by

the alternating series test.

When x = −2

3
we have

∞∑
n=1

(−1)n−1 · 3n

n · 2n

(
−2

3

)n

=
∞∑

n=1

(−1)n−1(−1)n

n
=

∞∑
n=1

(−1)2n−1

n
=

∞∑
n=1

−1

n
= −

∞∑
n=1

1

n
,

which diverges since it is a p-series with p = 1.

Therefore the interval of convergence is

(
−2

3
,
2

3

]

6. (a) Write the Taylor series for the function f(x) =
√

x centered at 1.

We have

f(x) =
√

x f(1) = 1

f ′(x) =
1

2
√

x
f ′(1) =

1

2

f ′′(x) =
1

2

(
−1

2

)
x−3/2 f ′′(1) =

1

2

(
−1

2

)
f ′′′(x) =

1

2

(
−1

2

)(
−3

2

)
x−5/2 f ′′′(1) =

1

2

(
−1

2

)(
−3

2

)
f (4)(x) =

1

2

(
−1

2

)(
−3

2

)(
−5

2

)
x−7/2 f (4)(1) =

1

2

(
−1

2

)(
−3

2

)(
−5

2

)
. . .

We can see now the pattern that we get. We have

f (5)(1) =
1

2

(
−1

2

)(
−3

2

)(
−5

2

)(
−7

2

)
=

1 · 3 · 5 · 7
25

f (6)(1) =
1

2

(
−1

2

)(
−3

2

)(
−5

2

)(
−7

2

)(
−9

2

)
= −1 · 3 · 5 · 7 · 9

26

. . . f (n)(1) = (−1)n−1 1 · 3 · 5 · · · (2n− 3)

2n
.

By Taylor’s Theorem the coefficients of the Taylor series for f(x) are cn =
f (n)(1)

n!
. For

n ≥ 2 this follows the pattern as above, and we have cn = (−1)n−1 1 · 3 · 5 · · · (2n− 3)

n! 2n
.
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The first two terms (for n = 0 and n = 1) do not follow this pattern, so we just write
them out separately; we get

√
x = 1 +

1

2
(x− 1) +

∞∑
n=2

(−1)n−1 1 · 3 · 5 · · · (2n− 3)

n! 2n
(x− 1)n

(b) Find the radius of convergence.

Using the ratio test we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣1 · 3 · 5 · · · (2n− 1) · (x− 1)n+1

(n + 1)! 2n+1
· n! 2n

1 · 3 · 5 · · · (2n− 3) · (x− 1)n

∣∣∣∣
= lim

n→∞

2n− 1

2(n + 1)
|x− 1|

= |x− 1|
set
< 1.

Therefore the radius of convergence is R = 1

(c) Estimate
√

1.4 using the first three terms of the Taylor series.

√
1.4 ≈ 1 +

1

2
(0.4)− 1

2! · 4
(0.4)2 = 1 + 0.2− 0.02 = 1.18

(For comparison, a calculator gives
√

1.4 ≈ 1.1832.)

7. Estimate

∫ 1

0

ex2

dx using the first two terms of the Maclaurin series expansion.

First we have that the Maclaurin series for ex is
∞∑

n=0

xn

n!
. Since the radius of convergence

is infinite we can substitute in x2 for x to get the Maclaurin series for ex2

, which is
∞∑

n=0

(x2)n

n!
=

∞∑
n=0

x2n

n!
. Integrating term by term we get

∫ 1

0

ex2

dx =
∞∑

n=0

x2n+1

n! (2n + 1)

∣∣∣∣1
0

=

(
∞∑

n=0

12n+1

n! (2n + 1)

)
−

(
∞∑

n=0

02n+1

n! (2n + 1)

)

=
∞∑

n=0

1

n! (2n + 1)
.

Now just evaluate the first 2 terms to get the approximation:

≈ 1

1
+

1

3
=

4

3
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8. Estimate

∫ 1

0

sin x2 dx using the first two terms of the Maclaurin series expansion.

This is similar to the previous problem.

First we have that the Maclaurin series for sin x is
∞∑

n=0

(−1)nx2n+1

(2n + 1)!
. Since the radius of

convergence is infinite we can substitute in x2 for x to get the Maclaurin series for sin(x2),

which is
∞∑

n=0

(−1)n(x2)2n+1

(2n + 1)!
=

∞∑
n=0

(−1)nx4n+2

(2n + 1)!
. Integrating term by term we get

∫ 1

0

sin x2 dx =
∞∑

n=0

(−1)nx4n+3

(4n + 3) · (2n + 1)!

∣∣∣∣1
0

=

(
∞∑

n=0

(−1)n · 14n+3

(4n + 3) · (2n + 1)!

)
−

(
∞∑

n=0

(−1)n · 04n+3

(4n + 3) · (2n + 1)!

)

=
∞∑

n=0

(−1)n

(4n + 3) · (2n + 1)!
.

Now just evaluate the first 2 terms to get the approximation:

≈ 1

3 · 1!
− 1

7 · 3!
=

13

42

9. (a) Write out and simplify

(
4
5

n

)
for n ≥ 2.

(b) Write the binomial series of (1− 2x3)4/5 and use (a) to simplify.

(a) First we have (
4
5

n

)
=

(
4
5

) (
−1

5

) (
−6

5

)
· · ·
(

4
5
− n + 1

)
n!

. (1)

The key to simplifying this expression is to observe that
4

5
− n + 1 = −5n− 9

5
;

therefore for n = 2 the binomial coefficient would look like

(
4
5

2

)
=

(
4
5

) (
−1

5

)
2!

, for

n = 3 it would be

(
4
5

2

)
=

(
4
5

) (
−1

5

) (
−6

5

)
3!

, and so on. Now we see that (1) equals

(−1)n−14 · 1 · 6 · 11 · · · (5n− 9)

5n n!
(2)

(b) We can use the formula (2) for n = 2 and up. For n = 0 and n = 1 we’ll just write
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those terms out separately. We have

(
4
5

0

)
= 1 and

(
4
5

1

)
=

4

5
, so

(1− 2x3)4/5 =
∞∑

n=0

(
4
5

n

)
(−2x3)n

= 1− 4

5
· 2x3 +

∞∑
n=2

(−1)n−14 · 1 · 6 · 11 · · · (5n− 9)

5n n!
· (−1)n2nx3n

= 1− 8

5
x3 −

∞∑
n=2

4 · 1 · 6 · 11 · · · (5n− 9)

n!
·
(

2

5

)n

x3n

Remark. We started from n = 2 because n = 0 and n = 1 do not seem to fit the
pattern in (2). However, if we rewrite (2) as

(−1)n · −4 · 1 · 6 · 11 · · · (5n− 9)

5n n!

it does work for n = 1. Thus, another way to write the binomial series for (1−2x3)4/5

is

1 +
∞∑

n=1

−4 · 1 · 6 · 11 · · · (5n− 9)

n!
·
(

2

5

)n

x3n.
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