Finding the *n*-th term of a sequence - Section 11.1

To develop a formula for the *n*-th term of a sequence $\{a_n\}$, look for the following patterns:

(a) The Arithmetic Pattern.

If the terms count up by the same number each time, then the *n*-th term will look like that number times n, plus or minus some correction term.

Example. $\{-4, -1, 2, 5, 8, 11, \ldots\}$.

Notice that each term in the sequence is 3 more than the one before. Therefore the n-th term is $3n \pm \xi$, where the ξ depends on where the sequence starts. If the first term is a_1 , then the n-th term is $a_n = 3n - 7$, since a_1 must be -4. If the first term is a_0 , then the *n*-th term is $a_n = 3n - 4$, since a_0 must be -4.

The following are all correct representations of the above sequence:

•
$$\{3n-7\}_{n=1}^{\infty}$$

- $\{3n-4\}_{n=0}^{\infty}$ $\{3n+2\}_{n=-2}^{\infty}$

(b) The Power Pattern.

If the terms are obtained by taking powers of successive integers, then the n-th term will look like $(n \pm \xi)^{\clubsuit}$, where the ξ depends on where the sequence starts.

Example. $\{4, 9, 16, 25, \ldots\}.$

Notice that each term in the sequence is a perfect square, starting with 2^2 . Therefore the *n*-th term is $(n \pm \xi)^2$ for some ξ . If the first term is a_2 , then the *n*-th term is simply $a_n = n^2$, since a_2 must be 4. If the first term is a_1 , then the *n*-th term is $a_n = (n+1)^2$, since ka_1 must be 4. The following are all correct representations of the above sequence:

•
$$\{n^2\}_{n=2}^{\infty}$$

• $\{(n+1)^2\}_{n=1}^{\infty}$
• $\{(n+2)^2\}_{n=0}^{\infty}$

(c) The Geometric (Exponential) Pattern.

If the terms are obtained by *multiplying* by the same number each time, then the *n*-th term will look like that number to the $(n \pm \xi)$ -th power, where the ξ depends on where the sequence starts.

Example. $\{\frac{1}{2}, 1, 2, 4, 8, 16, \ldots\}.$

Notice that each term in the sequence is twice the one before. Therefore the *n*-th term is $2^{n\pm\xi}$ for some ξ . If the first term is a_{-1} , then the *n*-th term is simply $a_n = 2^n$, since a_{-1} must be $\frac{1}{2}$. If the first term is a_1 , then the *n*-th term is $a_n = 2^{n-2}$, since a_1 must be $\frac{1}{2}$

The following are all correct representations of the above sequence:

- ${2^{n-2}}_{n=1}^{\infty}$ ${2^{n+1}}_{n=-2}^{\infty}$ ${2^n}_{n=-1}^{\infty}$

(d) The Alternating Pattern.

If the terms alternate, *i.e.* switch from positive to negative every term, then the pattern contains a multiple of $(-1)^{n\pm\xi}$ for some ξ . If $n\pm\xi$ is even, then the *n*-th term will be positive, so adjust ξ so that the correct terms are positive.

Example. $\{\frac{2}{3}, -\frac{2}{3}, \frac{2}{3}, -\frac{2}{3}, \ldots\}.$

The following are all correct representations of the above sequence:

- $\{(-1)^{n-1}\frac{2}{3}\}_{n=1}^{\infty}$ $\{(-1)^{n+1}\frac{2}{3}\}_{n=1}^{\infty}$ $\{(-1)^{n}\frac{2}{3}\}_{n=0}^{\infty}$

(e) A Combination of Patterns.

Combine the above techniques, but be careful to adjust everything so that the patterns all start correctly.

Example. $\{\frac{1}{3}, -\frac{5}{9}, \frac{9}{27}, -\frac{13}{81}, \ldots\}.$

Observe the following patterns:

- (i) Counting by 4's in the numerators
- (ii) Powers of 3 in the denominators
- (iii) Alternating terms, starting with a negative

Therefore our n-th term will look something like

$$(-1)^{\clubsuit}\frac{4n\pm\heartsuit}{3^{\bigstar}}$$

Choose an n to begin with. I'll pick n = 0. Then adjust everything so that plugging in n = 0 gives $a_0 = \frac{1}{3}$:

$$a_n = (-1)^{n+1} \frac{4n+1}{3^n}$$

Alternate solution: start with n = 1. Then the sequence is

$$\left\{(-1)^n \frac{4n-3}{3^{n-1}}\right\}_{n=1}^{\infty}$$

Notice the following convenient trick:

Convenient Trick. To start the sequence from n = 1 instead of n = 0, I replaced all the *n*'s in the *n*-th term formula by n - 1. Similarly, if I had wanted to begin with n = -10, I could have replaced all the *n*'s in the *n*-th term formula by n + 10:

$$\left\{(-1)^{n+11}\frac{4n+41}{3^{n+10}}\right\}_{n=-10}^{\infty}$$

Practice Problems.

For each problem, find a formula for a_n . If your first term is not a_1 , be sure to make it clear what your first term is by writing the sequence in the form $\{a_n\}_{n=?}^{\infty}$.

1. $\{1 \cdot 4, 4 \cdot 8, 7 \cdot 16, 10 \cdot 32, \ldots\}$

2. $\{-8, -1, 0, 1, 8, 27, 64, \ldots\}$

3. $\left\{-\frac{1}{6}, \frac{4}{7}, -2, \frac{64}{9}, -\frac{256}{10}, \ldots\right\}$