Math 111 Practice Midterm II - Solutions

Ch. 3-5

For each problem, prove the statement. Indicate what type of proof (trivial, vacuous, direct, by contrapositive, or by contradiction) you are using.

1. Let x be a real number.
(a) If $x>-7$, then $-5-x^{2}<0$.

For any real number $x, x \geq 0$. Therefore $-x^{2} \leq 0$, and $-5-x^{2} \leq-5+0=-5<0$. (This is a trivial proof.)
(b) If $|x|=5$, then $x^{2}+x+1>20$.

If $|x|=5$, then either $x=5$ or $x=-5$. Thus we can consider the following two cases:
Case 1. $x=5$.
Then $x^{2}+x+1=5^{2}+5+1=31>20$.
Case 2. $x=-5$.
Then $x^{2}+x+1=(-5)^{2}+(-5)+1=21>20$. (This is a direct proof by cases.)
(c) If $2 x>x^{2}+x^{3}$, then $x<1$.

We will prove this statement by contrapositive. Suppose $x \geq 1$. Then $x^{2} \geq x$ and $x^{3} \geq x$. Adding these two inequalities gives $x^{2}+x^{3} \geq 2 x$; thus $2 x \ngtr x^{2}+x^{3}$.
2. Let n and m be integers.
(a) If $3 n^{2}+5 n$ is odd, then $n \geq 10$.

We will show that for any integer n, the number $3 n^{2}+5 n$ is even. To do this, we will consider two cases:
Case 1. n is even.
Then $n=2 k$ for some $k \in \mathbb{Z}$. Therefore $3 n^{2}+5 n=3(2 k)^{2}+5(2 k)=12 k^{2}+10 k=$ $2\left(6 k^{2}+5 k\right)$. Since $6 k^{2}+5 k \in \mathbb{Z}$, the number $3 n^{2}+5 n$ is even.
Case 2. n is odd.
Then $n=2 k+1$ for some $k \in \mathbb{Z}$, and $3 n^{2}+5 n=3(2 k+1)^{2}+5(2 k+1)=$ $12 k^{2}+12 k+3+10 k+5=12 k^{2}+22 k+8=2\left(6 k^{2}+11 k+4\right)$. Since $6 k^{2}+11 k+4 \in \mathbb{Z}$, the number $3 n^{2}+5 n i$ seven.
Since $3 n^{2}+5 n$ is never odd, the implication follows. (This is a vacuous proof.)
(b) If n is even, then $3 n^{2}-2 n-5$ is odd.

Suppose n is even. Then $n=2 k$ for some $k \in \mathbb{Z}$. Therefore

$$
\begin{aligned}
3 n^{2}-2 n-5 & =3(2 k)^{2}-2(2 k)-5 \\
& =12 k^{2}-4 k-6-1 \\
& =2\left(6 k^{2}-2 k-3\right)+1
\end{aligned}
$$

Since $6 k^{2}-2 k-3 \in \mathbb{Z}$, the number $3 n^{2}-2 n-5$ is odd. (This is a direct proof.)
(c) If $7 n^{2}+4$ is even, then n is even.

We will prove this statement by contrapositive. Suppose n is odd. Then $n=2 k+1$ for some $k \in \mathbb{Z}$. Therefore $7 n^{2}+4=7(2 k+1)^{2}+4=7\left(4 k^{2}+4 k+1\right)+4=$ $28 k^{2}+28 k+11=2\left(14 k^{2}+14 k+5\right)+1$. Since $14 k^{2}+14 k+5 \in \mathbb{Z}, 7 n^{2}+4$ is odd. \square
(d) If $n-5 m$ is odd, then n and m are of opposite parity.

We will prove the statement by contrapositive. Thus we will prove that if n and m are of the same parity, then $n-5 m$ is even.
Case 1. n and m are both even.
Then $n=2 k$ and $m=2 l$ for some $k, l \in \mathbb{Z}$. Therefore $n-5 m=2 k-5(2 l)=$ $2 k-10 l=2(k-5 l)$. Since $k-5 l \in \mathbb{Z}$, the number $n-5 m$ is even.
Case 1. n and m are both odd.
Then $n=2 k+1$ and $m=2 l+1$ for some $k, l \in \mathbb{Z}$. Then $n-5 m=2 k+1-$ $5(2 l+1)=2 k+1-10 l-5=2 k-10 l-4=2(k-5 l-2)$. Since $k-5 l-2 \in \mathbb{Z}$, the number $n-5 m$ is even.
(e) If $5 \mid(n-1)$, then $5 \mid\left(n^{3}+n-2\right)$.

Suppose $5 \mid(n-1)$. Then $n \equiv 1(\bmod 5)$. Therefore $n^{3}+n-2 ? 1^{3}+1-2 \equiv 0(\bmod 5)$. This implies that $5 \mid\left(n^{3}+n-2\right)$. (This is a direct proof.)

Another proof: Suppose $5 \mid(n-1)$. Then $n-1=5 k$ for some $k \in \mathbb{Z}$. Therefore $n=5 k+1$, and we have $n^{3}+n-2=(5 k+1)^{3}+(5 k+1)-2=125 k^{3}+75 k^{2}+15 k+$ $1+5 k+1-2=125 k^{3}+75 k^{2}+20 k=5\left(25 k^{3}+15 k^{2}+4 k\right)$. Since $25 k^{3}+15 k^{2}+4 k \in \mathbb{Z}$, we have $5 \mid n^{3}+n-2$. (This is also a direct proof.)
(f) $3 \mid m n$ if and only if $3 \mid m$ or $3 \mid n$.

We have two implications to prove.
(\Rightarrow) Suppose $3 \mid m n$. Show that $3 \mid m$ or $3 \mid n$.
We will prove this statement by contrapositive. Suppose $3 \nmid m$ and $3 \nmid n$. Then $m=3 k+c$ and $n=3 l+d$ for some $k, l, c, d \in \mathbb{Z}$ where c and d are equal to either 1 or 2 . We have

$$
\begin{aligned}
m n & =(3 k+c)(3 l+d) \\
& =9 k l+3 k d+3 l c+c d \\
& =3(3 k l+k d+l c)+c d .
\end{aligned}
$$

Case 1. $c=d=1$.
Then $c d=1$, and $m n=3(3 k l+k+l)+1$. Thus $3 \nmid m n$.
Case 2. WLOG $c=2, d=1$.
Then $c d=2$, and $m n=3(3 k l+2 k+l)+2$. Thus $3 \nmid m n$.
Case 3. $c=d=2$.
Then $c d=4$, and $m n=3(3 k l+2 k+2 l)+4=3(3 k l+2 k+2 l+1)+1$. Thus $3 \nmid m n$.
(\Leftarrow) Suppose $3 \mid m$ or $3 \mid n$. Show that $3 \mid m n$.
We will prove this statement directly. Without loss of generality, suppose $3 \mid \mathrm{m}$. Then $m=3 k$ for some $k \in \mathbb{Z}$. Therefore $m n=3 k n$ is divisible by 3 .
3. The number $\log _{3} 2$ is irrational.

Suppose $\log _{3} 2$ is rational. Then $\log _{3} 2=\frac{m}{n}$ for some $m, n \in \mathbb{Z}, n>0$. Therefore $3^{m / n}=2$, so $3^{m}=2^{n}$. Since $n>0,3^{m}=2^{n}>1$. We know that 3^{m} is odd since it is a product of odd integers (or you can prove a little lemma here that says, If a is odd and m is a positive integer, then a^{m} is odd.). But we also know that 2^{n} is even since it is a product of even integers (or you can prove another similar lemma if you are not convinced). This is a contradiction, since an odd number cannot be equal to an even number. Therefore $\log _{3} 2$ is irrational. (This is a proof by contradiction.)
4. The product of a nonzero rational number and an irrational number is irrational.

Suppose there exist a nonzero rational number x and an irrational number y such that $x y$ is rational. Then $x=\frac{k}{l}$ for some $k, l \in \mathbb{Z}, k, l \neq 0$ and $x y=\frac{m}{n}$ for some $m, n \in \mathbb{Z}, m \neq 0$. We have $y=\frac{x y}{x}=\frac{\frac{m}{n}}{\frac{k}{l}}=\frac{m l}{n k}$. Since $m l, n k \in \mathbb{Z}$ and $n k \neq 0, y$ is rational. Contradiction. (This is a proof by contradiction.)
5. Let A and B be sets. Then $A \cap B=\emptyset$ if and only if $(A \times B) \cap(B \times A)=\emptyset$.

We have two implications to prove.
(\Rightarrow) Suppose $A \cap B=\emptyset$. Show that $(A \times B) \cap(B \times A)=\emptyset$.
We will prove this statement by contrapositive. Suppose $(A \times B) \cap(B \times A) \neq \emptyset$. Then there exists an element $x \in(A \times B) \cap(B \times A)$. Therefore $x \in A \times B$ and $x \in B \times A$. Thus $x=(y, z)$ for some $y \in A \cap B$ (and $z \in B \cap A$) It follows that $A \cap B \neq \emptyset$.
(\Leftarrow) Suppose $(A \times B) \cap(B \times A)=\emptyset$. Show that $A \cap B=\emptyset$.
We will prove this statement by contrapositive as well. Suppose $A \cap B \neq \emptyset$. Then there exists $x \in A \cap B$. Since $x \in A$ and $x \in B$, we have $(x, x) \in A \times B$ and $(x, x) \in B \times A$. Thus $(x, x) \in(A \times B) \cap(B \times A)$ and $(A \times B) \cap(B \times A) \neq \emptyset$.

