For each problem, prove the statement. Indicate what type of proof (trivial, vacuous, direct, by contrapositive, or by contradiction) you are using.

- 1. Let x be a real number.
 - (a) If x > -7, then $-5 x^2 < 0$.

For any real number $x, x \ge 0$. Therefore $-x^2 \le 0$, and $-5 - x^2 \le -5 + 0 = -5 < 0$. (This is a trivial proof.)

(b) If |x| = 5, then $x^2 + x + 1 > 20$.

If |x| = 5, then either x = 5 or x = -5. Thus we can consider the following two cases:

```
Case 1. x = 5.

Then x^2 + x + 1 = 5^2 + 5 + 1 = 31 > 20.

Case 2. x = -5.
```

Then $x^2 + x + 1 = (-5)^2 + (-5) + 1 = 21 > 20$. (This is a direct proof by cases.)

(c) If $2x > x^2 + x^3$, then x < 1.

We will prove this statement by contrapositive. Suppose $x \ge 1$. Then $x^2 \ge x$ and $x^3 \ge x$. Adding these two inequalities gives $x^2 + x^3 \ge 2x$; thus $2x \ne x^2 + x^3$. \Box

- 2. Let n and m be integers.
 - (a) If $3n^2 + 5n$ is odd, then $n \ge 10$.

We will show that for any integer n, the number $3n^2 + 5n$ is even. To do this, we will consider two cases:

Case 1. n is even.

Then n = 2k for some $k \in \mathbb{Z}$. Therefore $3n^2 + 5n = 3(2k)^2 + 5(2k) = 12k^2 + 10k = 2(6k^2 + 5k)$. Since $6k^2 + 5k \in \mathbb{Z}$, the number $3n^2 + 5n$ is even.

Case 2. n is odd.

Then n = 2k + 1 for some $k \in \mathbb{Z}$, and $3n^2 + 5n = 3(2k + 1)^2 + 5(2k + 1) = 12k^2 + 12k + 3 + 10k + 5 = 12k^2 + 22k + 8 = 2(6k^2 + 11k + 4)$. Since $6k^2 + 11k + 4 \in \mathbb{Z}$, the number $3n^2 + 5niseven$.

Since $3n^2 + 5n$ is never odd, the implication follows. (This is a vacuous proof.) \Box

(b) If n is even, then $3n^2 - 2n - 5$ is odd.

Suppose n is even. Then n = 2k for some $k \in \mathbb{Z}$. Therefore

$$3n^{2} - 2n - 5 = 3(2k)^{2} - 2(2k) - 5$$
$$= 12k^{2} - 4k - 6 - 1$$
$$= 2(6k^{2} - 2k - 3) + 1$$

Since $6k^2 - 2k - 3 \in \mathbb{Z}$, the number $3n^2 - 2n - 5$ is odd. (This is a direct proof.) \Box

(c) If $7n^2 + 4$ is even, then *n* is even.

We will prove this statement by contrapositive. Suppose *n* is odd. Then n = 2k + 1 for some $k \in \mathbb{Z}$. Therefore $7n^2 + 4 = 7(2k + 1)^2 + 4 = 7(4k^2 + 4k + 1) + 4 = 28k^2 + 28k + 11 = 2(14k^2 + 14k + 5) + 1$. Since $14k^2 + 14k + 5 \in \mathbb{Z}$, $7n^2 + 4$ is odd. \Box

(d) If n - 5m is odd, then n and m are of opposite parity.

We will prove the statement by contrapositive. Thus we will prove that if n and m are of the same parity, then n - 5m is even.

Case 1. n and m are both even.

Then n = 2k and m = 2l for some $k, l \in \mathbb{Z}$. Therefore n - 5m = 2k - 5(2l) = 2k - 10l = 2(k - 5l). Since $k - 5l \in \mathbb{Z}$, the number n - 5m is even.

Case 1. n and m are both odd.

Then n = 2k + 1 and m = 2l + 1 for some $k, l \in \mathbb{Z}$. Then n - 5m = 2k + 1 - 5(2l + 1) = 2k + 1 - 10l - 5 = 2k - 10l - 4 = 2(k - 5l - 2). Since $k - 5l - 2 \in \mathbb{Z}$, the number n - 5m is even.

(e) If $5 \mid (n-1)$, then $5 \mid (n^3 + n - 2)$.

Suppose 5 | (n-1). Then $n \equiv 1 \pmod{5}$. Therefore $n^3 + n - 2?1^3 + 1 - 2 \equiv 0 \pmod{5}$. This implies that 5 | $(n^3 + n - 2)$. (This is a direct proof.)

Another proof: Suppose 5 | (n-1). Then n-1 = 5k for some $k \in \mathbb{Z}$. Therefore n = 5k+1, and we have $n^3 + n - 2 = (5k+1)^3 + (5k+1) - 2 = 125k^3 + 75k^2 + 15k + 1 + 5k + 1 - 2 = 125k^3 + 75k^2 + 20k = 5(25k^3 + 15k^2 + 4k)$. Since $25k^3 + 15k^2 + 4k \in \mathbb{Z}$, we have $5 \mid n^3 + n - 2$. (This is also a direct proof.)

(f) $3 \mid mn$ if and only if $3 \mid m$ or $3 \mid n$.

We have two implications to prove.

 (\Rightarrow) Suppose $3 \mid mn$. Show that $3 \mid m$ or $3 \mid n$.

We will prove this statement by contrapositive. Suppose $3 \nmid m$ and $3 \nmid n$. Then m = 3k + c and n = 3l + d for some $k, l, c, d \in \mathbb{Z}$ where c and d are equal to either 1 or 2. We have

$$mn = (3k + c)(3l + d)$$

= 9kl + 3kd + 3lc + cd
= 3(3kl + kd + lc) + cd

Case 1. c = d = 1. Then cd = 1, and mn = 3(3kl + k + l) + 1. Thus $3 \nmid mn$. Case 2. WLOG c = 2, d = 1. Then cd = 2, and mn = 3(3kl + 2k + l) + 2. Thus $3 \nmid mn$. Case 3. c = d = 2. Then cd = 4, and mn = 3(3kl + 2k + 2l) + 4 = 3(3kl + 2k + 2l + 1) + 1. Thus $3 \nmid mn$. (\Leftarrow) Suppose $3 \mid m$ or $3 \mid n$. Show that $3 \mid mn$.

We will prove this statement directly. Without loss of generality, suppose $3 \mid m$. Then m = 3k for some $k \in \mathbb{Z}$. Therefore mn = 3kn is divisible by 3.

3. The number $\log_3 2$ is irrational.

Suppose $\log_3 2$ is rational. Then $\log_3 2 = \frac{m}{n}$ for some $m, n \in \mathbb{Z}, n > 0$. Therefore $3^{m/n} = 2$, so $3^m = 2^n$. Since n > 0, $3^m = 2^n > 1$. We know that 3^m is odd since it is a product of odd integers (or you can prove a little lemma here that says, *If a is odd and m is a positive integer, then a^m is odd.*). But we also know that 2^n is even since it is a product of even integers (or you can prove another similar lemma if you are not convinced). This is a contradiction, since an odd number cannot be equal to an even number. Therefore $\log_3 2$ is irrational. (This is a proof by contradiction.)

4. The product of a nonzero rational number and an irrational number is irrational.

Suppose there exist a nonzero rational number x and an irrational number y such that xy is rational. Then $x = \frac{k}{l}$ for some $k, l \in \mathbb{Z}, k, l \neq 0$ and $xy = \frac{m}{n}$ for some $m, n \in \mathbb{Z}, m \neq 0$. We have $y = \frac{xy}{x} = \frac{\frac{m}{n}}{\frac{k}{l}} = \frac{ml}{nk}$. Since $ml, nk \in \mathbb{Z}$ and $nk \neq 0, y$ is rational. Contradiction. (This is a proof by contradiction.)

5. Let A and B be sets. Then $A \cap B = \emptyset$ if and only if $(A \times B) \cap (B \times A) = \emptyset$.

We have two implications to prove.

 (\Rightarrow) Suppose $A \cap B = \emptyset$. Show that $(A \times B) \cap (B \times A) = \emptyset$.

We will prove this statement by contrapositive. Suppose $(A \times B) \cap (B \times A) \neq \emptyset$. Then there exists an element $x \in (A \times B) \cap (B \times A)$. Therefore $x \in A \times B$ and $x \in B \times A$. Thus x = (y, z) for some $y \in A \cap B$ (and $z \in B \cap A$) It follows that $A \cap B \neq \emptyset$.

(⇐) Suppose $(A \times B) \cap (B \times A) = \emptyset$. Show that $A \cap B = \emptyset$.

We will prove this statement by contrapositive as well. Suppose $A \cap B \neq \emptyset$. Then there exists $x \in A \cap B$. Since $x \in A$ and $x \in B$, we have $(x, x) \in A \times B$ and $(x, x) \in B \times A$. Thus $(x, x) \in (A \times B) \cap (B \times A)$ and $(A \times B) \cap (B \times A) \neq \emptyset$. \Box