Math 111 Practice Midterm III — Solutions

Ch. 6-9

1. Prove or disprove the following statements.

(a)

There exists a nonzero integer a such that for every real number b, b*> > a.

This statement is true. For example, let @ = —1. Then for every real number b, we
have b> > 0> —1, so b* > a.

There exists an integer a such that a® + 2a 4+ 3 = 100.

This statement is false. For any integer a, either a < 4 or @ > 5. If a < 4, then
a®+20+3<4>=2-44+3=75<100. Ifa>5,thena®*+2a+3>5"+2-54+3 =
138 > 100. Therefore a® + 2a + 3 = 100 is false for every integer a.

For any integer a there exists an integer b such that b*> = a.

This statement is false. For example, if a = —1, then there is no integer b such that
b = —1.

The sum of any two positive irrational numbers is irrational.

This statement is false. For example, V24 (2 —+/2) = 2. We proved in class that v/2
is irrational. You can make a similar argument to show that 2 — v/2 is also irrational.

Any irrational number is the sum of an irrational number and a positive rational
number.

This statement is true. Let a be any irrational number. Then a = 1+ (a — 1).
Observe that 1 is rational, and you can prove that a — 1 is irrational, again similar
to arguments in the previous problem.

For any sets A and B there exists a set C' such that AUC = BUC.

This statement is true. Let C = AUB. Then AUC = AUAUB = AU B and
bUC=BUAUB=AUB,so AUC=BUC

Let A, B, C, and D be sets such that A C C and B C D. If AN B = (), then
CnD=4.

This statement is false. For example, if A = {1}, B = {2}, C = {1,2}, D = {2,3},
then ACC, BC D,and ANB =0, and yet C N D # 0.

Let A, B, C, and D be sets such that A € C and B C D. If C N D = (), then
ANB=0.

This statement is true. Suppose that A C C, BC D, CND = {, but AN B # 0.
Then there is an element x € AN B,sox € Aand x € B. Since AC C and BC D,
it follows that z € C'and x € D. Then x € C'N D, thus C N D # (), a contradication.



2. Let A=1{1,2,3,4} and B = {a,b,c}. Which of the following are relations from A to B or
relations from B to A? Which of them are functions?

(a) {(a,1),(b,2),(c,3)}

This is a relation from B to A (since it is a subset of B x A). Moreover, it is a
function from B to A since each element of B is the first coordinate of exactly one
pair in the relation.

(b) {(1,0),(1,¢),(3,a),(4,b)}

This is a relation from A to B (since it is a subset of A x B), but it is not a function
since the image of 1 is not well-defined.

3. Determine which of the following relations are reflexive; symmetric; transitive. Which
of them are equivalence relations? For those that are, describe the distinct equivalence
classes.

(a) Relation R on set Z defined by (a,b) € R iff a +b = 0.

Reflexive. R is not reflexive since 1 + 1 # 0 and thus 1 R1.

Symmetric. R is symmetric: Suppose aRb. Then a + b = 0. Thus b+ a = 0, and
bRa.

Transitive. R is not transitive since —1R1 and 1R — 1 but 1 R1.

R is not an equivalence relation since R is not reflexive or transitive.

(b) Relation R on set R defined by (a,b) € R iff % € Q.

Reflexive. R is not reflexive since g ¢ Q and thus 0 R0.
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Symmetric. R is not symmetric since 1= 0 € Q but 0 ¢ Q, i.e. OR1 but 1 R0.
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Transitive. R is transitive: if aRb and bRc, then % and - € Q; thus — =
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and aRc.
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R is not an equivalence relation since R is not reflexive or symmetric.
(c) Relation R on set R defined by (a,b) € R iff ab > 0.

Reflexive. R is not reflexive since 0 -0 # 0 so 0 R0.
Symmetric. R is symmetric: If ab > 0, then ba > 0.

Transitive. R is transitive: If ab > 0 and bc > 0, then either a, b, and ¢ are all
positive or they are all negative. In either case, ac > 0.

R is not an equivalence relation since R is not reflexive.

(d) Relation R on set Z defined by (a,b) € R iff a = b(mod 3).



Reflexive. R is reflexive: for any a € Z, we have a = a (mod 3), so aRa.
Symmetric. R is symmetric: if a = b(mod 3), then b = a (mod 3).
Transitive. R is transitive: if a = b(mod 3) and b = ¢ (mod 3), then a = ¢ (mod 3).

R is an equivalence relation since it is reflexive, symmetric and transitive.
The equivalence classes are

O={a€Z|a=0 (mod3)}=1{...,-3,0,3,6,...}
l={a€Z|a=1 (mod3)}={...,—2,1,4,7,...}
2l={a€Z|a=2 (mod3)}={...,—1,2,5,8,...}

(e) Relation R on set Q defined by (a,b) € R iff a > b.

Reflexive. R is not reflexive since 1 # 1 so 1 R1.
Symmetric. R is not symmetric since 2 > 1 but 1 # 2.

Transitive. R is transitive: Suppose a > b and b > ¢. Then a > c.

R is not an equivalence relation since R is not reflexive or symmetric.

4. Determine which of the following functions are one-to-one; onto; bijective.

(a) f:Z — 7 defined by f(n) = 5n® + 2.

One-to-One. f is not one-to-one since f(1) = f(—1) = 2.
Onto. f is not onto since 3 ¢ im(f) (the only real solutions to the equation

5n® 4+ 2 = 3 are +—~= which are not integers).
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f is not bijective since f is neither one-to-one nor onto.

(b) f: N — R defined by f(n) = %

1 1
One-to-One. f is one-to-one: if f(x) = f(y), then — = — and by cross-multiplying

r oy
we get x = y.

1
Onto. f is not onto since 2 ¢ im(f) (the only real solution to the equation — = 2
n
1
isn= 3 which is not a natural number).

f is not bijective since f is not onto.
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(¢) f: R — R defined by f(z) =<
0 ifz=0.

One-to-One. f is one-to-one: suppose f(z) = f(y). If f(z) = f(y) = 0, then

x =1y =0. If not then ~= ;, and similar to the previous problem we get z = y.
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Onto. f is onto: Suppose y € R. If y = 0 then f(0) = 0 = y. If y # 0 then
1
f (—) = y. Therefore y € im(f).
)
f is bijective since f is one-to-one and onto.

f: R — R defined by f(z) =2 — z.

One-to-One. f is not one-to-one since f(1) = f(0) = 0.
Onto. f is onto since it is a continuous function whose end behavior is lim f(z) =

T— 00

oo and lim f(x) = —c0.
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f is not bijective since f is not one-to-one.

5. Prove or disprove the following statements.

(a)

Let f: A— B and g: B — C be two functions. If ¢ is onto, then g o f is onto.

This statement is false. Consider the following example: A = B = C = {1,2},
f(1)=f(2)=1,¢9(1) =1, g(2) = 2. Then go f(1) = go f(2) = 1. Note that g is
onto, but g o f is not.

Let f: A— B and g: B — C be two functions. If both g and g o f are one-to-one,
then f is one-to-one.

This statement is true. Suppose f(z) = f(y) for some z, y € A. then (go f)(z) =
g(f(x)) =g(f(y)) = (gof)(y). Since go f is one-to-one, x = y. Hence f is one-to-one.

Note: we did not use the fact that g is one-to-one.

Let f: A— B and g: B — C be two functions. If both f and g o f are one-to-one,
then g is one-to-one.

The statement is false. Consider the following example: A = C' = {1}, B = {1, 2},
f(1)=1,g(1) =¢g(2) = 1. Then go f(1) = 1. Note that f and go f are one-to-one,
but g is not.

6. Use mathematical induction to prove the following statements.

(a)

1 2
Let n € N. Then1-2+2-3+3.4+_.‘+n(n+1):n(n+ ?2(”4‘ )

1 2 1(1+1)(1+2
Base Case. Let n = 1. Then nn + 3)(n+ >: L+ D0+ ):2:1-2. Thus

3
the statement holds for n = 1.
Inductive Step. Suppose k is a positive integer for which 1-2+42-3+3-4+ ... +
k(k+1)(k+2)
k(k+1) = . We must show that 1-2+2-3+3-4+ ...+ k(k+
(k+1)(k+2)(k+3)

)+ (k+1)(k+2) = : .




We have

102423434+ (k1) + (k4 1)(k +2) = FEFDEFD)

(k+1)(k+2) (byin

k(k+1)(k+2) +3(k+ 1) (k+2)
3
(k+1)(k+2)(k+3)
. .

(b) Let n € N. Then 5 | (n® —n).

Base Case. Let n = 1. Then n° —n = 1° — 1 = 0 which is divisible by 5.

Inductive Step. Suppose k is a positive integer for which 5 | (k> — k). We must
show that 5 | ((k +1)® — (k +1)).
We know by the inductive hypothesis that k°—k = 5m for some m € Z. Therefore

((k+1)° = (k+1)) = k* + 5k" + 10k + 10k* + 5k +1 — k — 1
= (k° — k) + 5k* + 10k® + 10k* + 5k
= 5m + 5k* + 10k® + 10k* + 5k
=5(m + k' + 2k + 2k* + k)

which is divisible by 5.



