\qquad
Due with homework on Friday, October 10

The Really Awful Truth about $x<0$

Recall that for $x>0$ it is true that $\frac{1}{x^{3}}=\sqrt{\frac{1}{x^{6}}}$, but for $x<0$ this is not true! For example, for $x=-1$ we have $\frac{1}{(-1)^{3}}=-1$, but $\sqrt{\frac{1}{(-1)^{6}}}=1$. So for $x<0$ we have

$$
\frac{1}{x^{3}}=-\sqrt{\frac{1}{x^{6}}}
$$

(notice the extra minus sign).
On the other hand, $\frac{1}{x^{3}}=\sqrt[3]{\frac{1}{x^{9}}}$ for all $x \neq 0$, both positive and negative! (Check it for $x=-1$ to verify.)

The best way to figure out if you need to add a minus sign in this type of situation is to test it with $x=-1$. If it comes out wrong, put in a minus sign.

Here are some exercises to check your understanding:

Part I.

For each expression in exercises 1 to 7 , assume $x<0$. Decide whether a minus sign should be added to the front of the radical. Put in a $(+)$ or $(-)$ sign for each one to make the statement correct for $x<0$.

1. $\frac{1}{x}=\sqrt{\frac{1}{x^{2}}}$
2. $\frac{1}{x^{2}}=\sqrt{\frac{1}{x^{4}}}$
3. $\frac{1}{x^{5}}=\sqrt{\frac{1}{x^{10}}}$
4. $\frac{1}{x^{5}}=\sqrt[3]{\frac{1}{x^{15}}}$
5. $\frac{1}{x^{5}}=\sqrt[4]{\frac{1}{x^{20}}}$
6. $\frac{1}{x^{2 / 3}}=\sqrt[3]{\frac{1}{x^{2}}}$
7. $\frac{1}{x^{1 / 5}}=\sqrt[4]{\frac{1}{x^{4 / 5}}}$

For exercises 8 to 14, fill in the correct power to make the statement true, and fill in the correct sign in front of the radical, assuming $x<0$.
8. $\frac{1}{x^{2}}=\sqrt{\frac{1}{x^{\square}}}$
9. $\frac{1}{x^{3}}=\sqrt[4]{\frac{1}{x^{\square}}}$
10. $\frac{1}{x}=\sqrt[3]{\frac{1}{x^{\square}}}$
11. $\frac{1}{x^{4}}=\sqrt[9]{\frac{1}{x^{\square}}}$
12. $\frac{1}{x^{4}}=\sqrt[3]{\frac{1}{x^{\square}}}$
13. $\frac{1}{x^{1 / 3}}=\sqrt[6]{\frac{1}{x^{\square}}}$
14. $\frac{1}{x^{4 / 7}}=\sqrt{\frac{1}{x^{\square}}}$

Part II. Find each limit. Be careful when $x \rightarrow-\infty$! You may complete these problems on separate paper if you need more room.

1. $\left.\lim _{x \rightarrow \infty} \frac{\sqrt{x^{2}-3 x+10}}{x+2} \right\rvert\,$ 5. $\lim _{x \rightarrow-\infty} \frac{\sqrt[4]{2 x^{12}-3 x^{6}-1}}{x^{3}+x-5}$
2. $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2}-3 x+10}}{x+2}$
3. $\lim _{x \rightarrow-\infty} \frac{-x^{3}-2 x^{2}+1}{\sqrt[3]{3 x^{10}+4 x^{7}-x^{2}+x}}$
4. $\lim _{x \rightarrow-\infty} \frac{-3 x^{2}+4 x-2}{\sqrt[6]{8 x^{12}-9 x^{11}-5 x}}$
5. $\lim _{x \rightarrow-\infty} \frac{\sqrt{x^{2 / 3}-1}}{3 x^{2}+5 x-2}$
6. $\lim _{x \rightarrow-\infty} \frac{x^{4}-2 x^{3}+1}{\sqrt{3 x^{8}+5 x^{6}-x+2}}$
7. $\lim _{x \rightarrow-\infty} \frac{x+3}{\sqrt[6]{5 x^{12 / 7}-2 x^{1 / 7}-9}}$
