Due with homework on Friday, October 10

The Really Awful Truth about x < 0

Recall that for x > 0 it is true that $\frac{1}{x^3} = \sqrt{\frac{1}{x^6}}$, but for x < 0 this is not true! For example, for x = -1 we have $\frac{1}{(-1)^3} = -1$, but $\sqrt{\frac{1}{(-1)^6}} = 1$. So for x < 0 we have

$$\frac{1}{x^3} = -\sqrt{\frac{1}{x^6}}$$

(notice the extra minus sign).

On the other hand, $\frac{1}{x^3} = \sqrt[3]{\frac{1}{x^9}}$ for all $x \neq 0$, both positive and negative! (Check it for x = -1 to verify.)

The best way to figure out if you need to add a minus sign in this type of situation is to test it with x = -1. If it comes out wrong, put in a minus sign.

Here are some exercises to check your understanding:

Part I.

For each expression in exercises 1 to 7, assume x < 0. Decide whether a minus sign should be added to the front of the radical. Put in a (+) or (-) sign for each one to make the statement correct for x < 0.

1.
$$\frac{1}{x} = \sqrt{\frac{1}{x^2}}$$

2. $\frac{1}{x^2} = \sqrt{\frac{1}{x^4}}$
3. $\frac{1}{x^5} = \sqrt{\frac{1}{x^{10}}}$
4. $\frac{1}{x^5} = \sqrt[3]{\frac{1}{x^{15}}}$
5. $\frac{1}{x^5} = \sqrt[4]{\frac{1}{x^{20}}}$
6. $\frac{1}{x^{2/3}} = \sqrt[3]{\frac{1}{x^2}}$
7. $\frac{1}{x^{1/5}} = \sqrt[4]{\frac{1}{x^{4/5}}}$

For exercises 8 to 14, fill in the correct power to make the statement true, and fill in the correct sign in front of the radical, assuming x < 0.

8.
$$\frac{1}{x^2} = \sqrt{\frac{1}{x^{\Box}}}$$

9. $\frac{1}{x^3} = \sqrt[4]{\frac{1}{x^{\Box}}}$
10. $\frac{1}{x} = \sqrt[3]{\frac{1}{x^{\Box}}}$
11. $\frac{1}{x^4} = \sqrt[9]{\frac{1}{x^{\Box}}}$
12. $\frac{1}{x^4} = \sqrt[3]{\frac{1}{x^{\Box}}}$
13. $\frac{1}{x^{1/3}} = \sqrt[6]{\frac{1}{x^{\Box}}}$
14. $\frac{1}{x^{4/7}} = \sqrt{\frac{1}{x^{\Box}}}$

over for more fun!

Name: _

Part II. Find each limit. Be careful when $x \to -\infty$! You may complete these problems on separate paper if you need more room.

$$1. \lim_{x \to \infty} \frac{\sqrt{x^2 - 3x + 10}}{x + 2} \qquad 5. \lim_{x \to -\infty} \frac{\sqrt{2x^{12} - 3x^6 - 1}}{x^3 + x - 5}$$

$$2. \lim_{x \to \infty} \frac{\sqrt{x^2 - 3x + 10}}{x + 2} \qquad 6. \lim_{x \to -\infty} \frac{-x^3 - 2x^2 + 1}{\sqrt[4]{3x^{10} + 4x^7 - x^2 + x}}$$

$$3. \lim_{x \to -\infty} \frac{-3x^2 + 4x - 2}{\sqrt[4]{8x^{12} - 9x^{11} - 5x}} \qquad 7. \lim_{x \to -\infty} \frac{\sqrt{x^{2/3} - 1}}{3x^2 + 5x - 2}$$

$$4. \lim_{x \to -\infty} \frac{x^4 - 2x^3 + 1}{\sqrt{3x^8 + 5x^4 - x + 2}} \qquad 8. \lim_{x \to -\infty} \frac{x + 3}{\sqrt[4]{5x^{12/7} - 2x^{1/7} - 9}}$$