Multiple Choice. Circle the letter of the best answer.

1. A description for the function $f(x)=\sqrt{3 x}+2$ is
(a) Take 3 times a number and then add 2
(b) Take 3 times a number, add 2, and then take the square root of the result
(c) Take 3 times a number, take the square root of the result, then add 2
(d) Take $\sqrt{3}$ times a number and then add 2
$3 x$ is under the square root, so we are taking the input and multiplying it by 3 , then taking the square root of the result. Finally, we add 2.
2. The range of the function $g(x)=-x^{2}+6 x+5$ is
(a) \mathbb{R} (all real numbers)
(c) $[-\infty, 14)$
(b) $[14, \infty)$
(d) $(-\infty, 14]$
$g(x)$ is a parabola opening down, so the range (set of outputs) must be from $-\infty$ to the y-coordinate of the vertex. The vertex is at $(3,14)$ (for a reminder of how to find the vertex of a parabola, see p. 65-66 of Ebersole). Therefore the range is $(-\infty, 14]$ since 14 is included but $-\infty$ is not ($-\infty$ is not a real number!).
3. The graph of the function $g(t)=\sqrt{9-t^{2}}$ is
(a) A circle of radius 9 centered at the origin
(b) A circle of radius 3 centered at the origin
(c) The upper half of a circle of radius 9 centered at the origin
(d) The upper half of a circle of radius 3 centered at the origin
$y=\sqrt{r^{2}-t^{2}}$ always represents the upper half of a circle of radius r centered at the origin, since if we square both sides we get $y^{2}=r^{2}-t^{2}$, or $t^{2}+y^{2}=r^{2}$, which is the equation of a circle of radius r. We get only the upper half because $\sqrt{r^{2}-t^{2}}$ cannot be negative.
4. If the distance of a train from a station at time t minutes is $s(t)=30-t^{2}$ meters, then the average velocity of the train during the second minute is
(a) 6 meters per minute
(c) 4 meters per minute
(b) 3 meters per minute
(d) 26 meters per minute

The second minute starts at time $t=1$ and goes to $t=2$. The average velocity is always

$$
\frac{\text { distance traveled }}{\text { time elapsed }}
$$

in this case the train travels $s(2)-s(1)$ meters in 1 second, so we have

$$
\frac{s(2)-s(1)}{1}=\left(30-2^{2}\right)-\left(30-1^{2}\right)=26-29=-3 \text { meters per minute. }
$$

The answer comes out negative because the distance of the train from the station has actually decreased, i.e. the train is moving toward the station at an average speed of 3 meters per minute.
5. At $x=1$ the graph of $f(x)=\frac{x-1}{x^{2}-4 x+3}$
(a) is continuous
(c) has a vertical asymptote
(b) has a hole
(d) has none of the above

By factoring and cancelling we can see that

$$
f(x)=\frac{x-1}{(x-1)(x-3)}=\frac{1}{x-3} \quad \text { as long as } x \neq 1
$$

So the graph of $f(x)$ is identical to that of $\frac{1}{x-3}$, except that there is a hole at $x=1$.
6. At $x=-2$ the graph of $f(x)=\frac{|x+2|}{x+2}$
(a) is a horizontal line at $y=1$
(c) has a vertical asymptote
(b) has a hole
(d) has none of the above

We have

$$
\begin{aligned}
f(x) & = \begin{cases}\frac{x+2}{x+2} & \text { if } x+2>0 \\
\frac{-(x+2)}{x+2} & \text { if } x+2<0\end{cases} \\
& = \begin{cases}1 & \text { if } x>-2 \\
-1 & \text { if } x<-2\end{cases}
\end{aligned}
$$

Therefore the graph has a break at $x=-2$ (it looks like the horizontal line $y=1$ for $x>-2$, but looks like $y=-1$ for $x<-2$. The function is undefined at $x=-2$).
7. At $x=-1$ the graph of $f(x)=\frac{|x+2|}{x+2}$
(a) is a horizontal line at $y=1$
(c) has a vertical asymptote
(b) has a hole
(d) has none of the above

From the above problem, since -1 is a number greater than -2 , the graph of $f(x)$ looks like the horizontal line $y=1$ there.
8. For $f(x)=4 x^{5}-\pi x^{3}+\frac{x}{\sqrt{6}}$ and $g(x)=5 x^{3}-\frac{4}{x}+2$, which are polynomial functions?
(a) $f(x)$ only
(c) both $f(x)$ and $g(x)$
(b) $g(x)$ only
(d) neither $f(x)$ nor $g(x)$
$f(x)$ can be rewritten as $4 x^{5}-\pi x^{3}+\frac{1}{\sqrt{6}} x$, so it has only whole-number powers of x. The function $g(x)$ cannot be written only in terms of whole-number powers of x, since $\frac{4}{x}=4 x^{-1}$ 。
9. The zeros of the function $f(t)=5 t^{2}+13 t-6$ are
(a) 5 and 13
(c) -2 and $\frac{3}{2}$
(b) $\frac{2}{5}$ and -3
(d) $\frac{1}{2}$ and -6

To find the zeros (or roots) of a function, we set it equal to zero and solve:

$$
\begin{gathered}
5 t^{2}+13 t-6 \stackrel{\text { set }}{=} 0 \\
(5 t-2)(t+3)=0 \\
5 t-2=0 \quad \text { or } \quad t+3=0 \\
5 t=2 \quad \text { or } \quad t=-3 \\
t=\frac{2}{5}, \quad t=-3
\end{gathered}
$$

10. The function $s(t)=\frac{t^{2}-9}{t+3}$
(a) is continuous at $t=-3$
(b) is not continuous at $t=-3$.
$t=-3$ is not in the domain of $s(t)$. Therefore the function cannot be continuous there.
11. Suppose $f(x)$ is a function such that $\lim _{x \rightarrow 1} f(x)=2$. Which of the following is always true of $f(x)$?
(a) $f(x)$ is continuous at $x=1$
(c) $f(1)=2$
(b) $f(x)$ is continuous on the intervals $(0,1)$ and $(1,2)$
(d) None of these.

The limit says nothing about the value of $f(x)$ at $x=1$, only what the function is trying to do as x gets close to 1 (from both sides). We are not even guaranteed that the function is "well-behaved" on the intervals $(0,1)$ and $(1,2)$; for instance, the graph at right shows a function $f(x)$ for which $\lim _{x \rightarrow 1} f(x)=2$, but none of the first three answer choices applies.

Fill-In.

1. If $f(x)=3 x-5$ and $g(x)=x^{3}$, then
(a) $(g \circ f)(1)=-8$
(b) $(g-f)(0)=\underline{5}$
(c) $(f \circ f)(2)=-2$
(d) $(f \circ g)(-1)=\underline{-8}$

These problems can be done in two ways. You can either just plug the specific inputs into each function, or you can compute the formulas for $(g \circ f)(x),(g-f)(x),(f \circ f)(x)$, and $(f \circ g)(x)$ and then plug in the values to each new formula.

Method 1.

(a) $f(1)=3(1)-5=-2$, so $(g \circ f)(1)=g(f(1))=g(-2)=(-2)^{3}=-8$.
(b) $(g-f)(0)=g(0)-f(0)=0^{3}-(3(0)-5)=0-(-5)=5$.
(c) $f(2)=3(2)-5=1$, so $(f \circ f)(2)=f(f(2))=f(1)=3(1)-5=-2$.
(d) $g(-1)=(-1)^{3}=-1$, so $(f \circ g)(-1)=f(g(-1))=f(-1)=3(-1)-5=-8$.

Method 2.
(a) $(g \circ f)(x)=g(f(x))=g(3 x-5)=(3 x-5)^{3}$, so $(g \circ f)(1)=(3(1)-5)^{3}=(-2)^{3}=-8$.
(b) $(g-f)(x)=g(x)-f(x)=x^{3}-(3 x-5)=x^{3}-3 x+5$, so $(g-f)(0)=0^{3}-3(0)+5=5$.
(c) $(f \circ f)(x)=f(f(x))=f(3 x-5)=3(3 x-5)-5=9 x-15-5=9 x-20$, so $(f \circ f)(2)=9(2)-20=-2$.
(d) $(f \circ g)(x)=f(g(x))=f\left(x^{3}\right)=3 x^{3}-5$, so $(f \circ g)(-1)=3(-1)^{3}-5=-3-5=-8$.
2. $\lim _{x \rightarrow 5} \frac{x-5}{x^{2}-12 x+35}=-\frac{1}{2}$

We have

$$
\begin{aligned}
\lim _{x \rightarrow 5} \frac{x-5}{x^{2}-12 x+35} & =\lim _{x \rightarrow 5} \frac{x-5}{(x-5)(x-7)} \\
& =\lim _{x \rightarrow 5} \frac{1}{x-7}=-\frac{1}{2}
\end{aligned}
$$

3. Use the graph of $g(t)$ shown at right to answer parts (3a) and (3b). For each question, list all the t-values or largest intervals that make the sentence true.

(a) The value(s) of t at which $g(t)$ is not continuous is/are \qquad 2 -

The only place I am required to "pick up my pencil" is at $t=2$.
(b) The interval(s) on which $g(t)$ is continuous is/are \qquad $(-\infty, 2]$ and $(2, \infty)$.
$g(t)$ is continuous everywhere except at $t=2$. At $t=2, g(t)$ is continuous from the left.

Graphs.

1. The graph of $f(x)$ is shown at right. On the same axes, sketch the graph of $f(-x)$.

The transformation $f(x) \rightarrow f(-x)$ results in a horizontal reflection of the graph about the y-axis.
2. On the axes at right, sketch the graph of $h(x)=2|x-1|+3$. There are two ways to do this problem. You may consider transformations of the graph of $|x|$ as follows:
$|x| \underset{\text { right } 1}{\text { shift }}|x-1| \xrightarrow[\text { vertically by } 2]{\text { stretch }} 2|x-1| \xrightarrow[\text { up } 3]{\text { shift }} 2|x-1|+3$
(there are other orders possible for the sequence of transformations).

Or, you can write the function as a piecewise function and then graph the two lines:

$$
\begin{aligned}
h(x) & = \begin{cases}2(x-1)+3 & \text { if } x-1 \geq 0 \\
-2(x-1)+3 & \text { if } x-1<0\end{cases} \\
& = \begin{cases}2 x+1 & \text { if } x \geq 1 \\
-2 x+5 & \text { if } x<1\end{cases}
\end{aligned}
$$

(Reality check: notice that the slopes of the two lines are ± 2, and that we change rules at $x=1$, as we expected from the first solution.) $h(1)=2(1)+1=3$, so the vertex is at $(1,3)$, and we get the graph shown at right.
3. On the axes at right, sketch a graph of $g(t)=\frac{t^{2}-t-2}{t-2}$.

Note that

$$
g(t)=\frac{(t-2)(t+1)}{t-2}=t+1
$$

(as long as $t \neq 2$). Therefore the graph of $g(t)$ is identical to the graph of the line $y=t+1$, except that there is a

4. On the axes at right, sketch a graph of any function $f(x)$ satisfying all of the following:

- $\lim _{x \rightarrow 3^{-}} f(x)=2$
- $\lim _{x \rightarrow 3^{+}} f(x)=-1$
- $f(3)=4$
- $\lim _{x \rightarrow-2} f(x)=0$
- $\lim _{x \rightarrow 0} f(x)$ does not exist

There are many possible solutions. Here is one.

Work and Answer. You must show all relevant work to receive full credit.

1. Write $f(x)=\frac{|3 x-6|}{x-2}$ as a piecewise function and graph the function. What is the domain of $f(x)$?

$$
\begin{aligned}
f(x) & = \begin{cases}\frac{3 x-6}{x-2} & \text { if } 3 x-6>0 \\
\frac{-(3 x-6)}{x-2} & \text { if } 3 x-6<0\end{cases} \\
& = \begin{cases}\frac{3(x-2)}{x-2} & \text { if } 3 x>6 \\
\frac{-3(x-2))}{x-2} & \text { if } 3 x<6\end{cases} \\
& = \begin{cases}3 & \text { if } x>2 \\
-3 & \text { if } x<2\end{cases}
\end{aligned}
$$

The graph has a break at $x=2$. It looks like the horizontal line $y=3$ for $x>2$, but looks like $y=-3$ for $x<2$. The function is undefined at $x=2$. In fact the domain is all real numbers except 2
2. Find the domain of the function $g(x)=\frac{3 \sqrt{x}}{4 x-1}$. Express your answer in interval notation. Because of the denominator, we know $4 x-1 \neq 0$. Solving for x, we get $4 x \neq 1$, or $x \neq \frac{1}{4}$. We also have, because of the square root, $x \geq 0$. So the domain is all real numbers greater than or equal to 0 , except for $\frac{1}{4}$. In interval notation, this is $\left[0, \frac{1}{4}\right) \cup\left(\frac{1}{4}, \infty\right)$
3. Compute $\lim _{x \rightarrow 0^{-}} \frac{|x|-x}{x}$. If the limit does not exist, explain why.

When $x<0,|x|=-x$. In this case $\frac{|x|-x}{x}=\frac{-x-x}{x}=\frac{-2 x}{x}=-2$. This tells us that the graph of $\frac{|x|-x}{x}$ to the left of the y-axis looks like the horizontal line $y=-2$. Since in this limit x approaches 0 only from the left (i.e. from the negative side), the answer is

$$
\lim _{x \rightarrow 0^{-}} \frac{|x|-x}{x}=-2
$$

4. Find the domain of the function $f(x)=\sqrt[20]{-x^{2}-3 x+4}$. Express your answer in interval notation.

We know $-x^{2}-3 x+4 \geq 0$ since it is under an even root. Solving the inequality we have

$$
\begin{aligned}
x^{2}+3 x-4 & \leq 0 \\
(x+4)(x-1) & \leq 0
\end{aligned}
$$

(we divided both sides by -1 to make factoring easier; remember that this switches the direction of the inequality)

We know that $x=-4$ and $x=1$ are the two numbers that make the left side equal to 0 . Now we need to find all the numbers that make the left side less than 0 . The easiest way to do this is to draw a number line with -4 and 1 on it, and test points in between and on either side.

You can see that in the three areas we tested, only the middle (between -4 and 1) comes out negative, as desired. So the set of all solutions to the inequality $x^{2}+3 x-4 \leq 0$, and therefore the domain of $f(x)$, is $-4 \leq x \leq 1$, or in interval notation, $[-4,1]$

