Math 75A Bonus Assignment – Derivatives of Logarithmic Functions

Must be turned in at the end of class Monday, November 24

Recall that the derivative of $f(x) = \ln x$ is $f'(x) = \frac{1}{x}$. Now try these:

For each function, fill in the derivative.

f(x)	f'(x)	f(x)	f'(x)
$3\ln x$		$\ln(3x^2+1)$	
$x^2 \ln x$		$\ln\left((8x^5-3)\sin x\right)$	

Do you see an easier way to do the last one above? We can use a logarithm law to rewrite the original function as

$$f(x) = \ln(8x^5 - 3) + \ln(\sin x)$$

and now the derivative should be much easier! Try it again using the above equation:

 $f'(x) = _$

Are your two answers equal to each other (after some algebra)?

Now try these: for each function, do the following:

- (a) Use logarithm laws to rewrite the function so that the terms are logarithms that are as simple as possible.
- (b) Find the derivative of the function.

1.
$$f(x) = \ln\left(\frac{x^5 - e^x}{7x + 1}\right)$$

over for more fun!

2.
$$g(x) = \ln \left((x^6 + 6^x)^4 \right)$$

3.
$$h(x) = \ln \left((4x^2 - \sqrt{x} + 7)^3 (3e^x - 2)^5 \right)$$

4.
$$k(x) = \ln\left(\frac{\sqrt[3]{9x^4 - 10^{4x-3}}}{(5x^2 + 3)^9(12\sqrt{x-2})^2}\right)$$