Must be turned in at the end of class Monday, November 24

Name:
Section: 9:15 2:15

Recall that the derivative of $f(x)=\ln x$ is $f^{\prime}(x)=\frac{1}{x}$. Now try these:
For each function, fill in the derivative.

$f(x)$	$f^{\prime}(x)$	$f(x)$	$f^{\prime}(x)$
$3 \ln x$		$\ln \left(3 x^{2}+1\right)$	
$x^{2} \ln x$		$\ln \left(\left(8 x^{5}-3\right) \sin x\right)$	

Do you see an easier way to do the last one above? We can use a logarithm law to rewrite the original function as

$$
f(x)=\ln \left(8 x^{5}-3\right)+\ln (\sin x)
$$

and now the derivative should be much easier! Try it again using the above equation:

$$
f^{\prime}(x)=
$$

Are your two answers equal to each other (after some algebra)?

Now try these: for each function, do the following:
(a) Use logarithm laws to rewrite the function so that the terms are logarithms that are as simple as possible.
(b) Find the derivative of the function.

1. $f(x)=\ln \left(\frac{x^{5}-e^{x}}{7 x+1}\right)$
2. $g(x)=\ln \left(\left(x^{6}+6^{x}\right)^{4}\right)$
3. $h(x)=\ln \left(\left(4 x^{2}-\sqrt{x}+7\right)^{3}\left(3 e^{x}-2\right)^{5}\right)$
4. $k(x)=\ln \left(\frac{\sqrt[3]{9 x^{4}-10^{4 x-3}}}{\left(5 x^{2}+3\right)^{9}(12 \sqrt{x-2})^{2}}\right)$
