Math 75B Selected Homework Solutions

Ch. 9 (E), §§2.6, 3.3 (S)
$\S 2.6 \# 8$. Find $\frac{d y}{d x}$ by implicit differentiation: $1+x=\sin \left(x y^{2}\right)$.
Taking the derivative of both sides, we get

$$
1=\cos \left(x y^{2}\right)\left(2 x y \frac{d y}{d x}+y^{2}\right)
$$

Now we solve for $\frac{d y}{d x}$:

$$
\begin{gathered}
1=\cos \left(x y^{2}\right) \cdot 2 x y \frac{d y}{d x}+\cos \left(x y^{2}\right) \cdot y^{2} \\
1-y^{2} \cos \left(x y^{2}\right)=2 x y \cos \left(x y^{2}\right) \frac{d y}{d x} \\
\frac{d y}{d x}=\frac{1-y^{2} \cos \left(x y^{2}\right)}{2 x y \cos \left(x y^{2}\right)}
\end{gathered}
$$

$\S 2.6 \# 16$. If $g(x)+x \sin (g(x))=x^{2}$, find $g^{\prime}(0)$.
Differentiating implicitly, we get

$$
g^{\prime}(x)+x \cos (g(x)) \cdot g^{\prime}(x)+\sin (g(x))=2 x .
$$

Since this equation is true for all x, it is certainly true for $x=0$. Since the problem is asking for $g^{\prime}(0)$, we plug in $x=0$ to the equation and get

$$
g^{\prime}(0)+0 \cos (g(0)) \cdot g^{\prime}(0)+\sin (g(0))=2 \cdot 0 .
$$

Simplifying, we get $g^{\prime}(0)+\sin (g(0))=0$ which, when solved for $g^{\prime}(0)$, gives

$$
g^{\prime}(0)=-\sin (g(0))
$$

All we need is to find $g(0)$. But the original equation is true for $x=0$ (and every other x), so we also have

$$
g(0)+0 \sin (g(0))=0^{2}
$$

and therefore $g(0)=0$. Thus $g^{\prime}(0)=-\sin (g(0))=-\sin (0)=0$
$\S 3.3 \# 52$. Use logarithmic differentiation to find the derivative of $y=\sqrt{x}^{x}$.
First we apply $\ln ()$ to both sides: $\ln (y)=\ln \left(\sqrt{x}^{x}\right)$. Then we use logarithm laws to rewrite the right side:

$$
\ln (y)=x \ln (\sqrt{x})=\frac{1}{2} x \ln (x) .
$$

(Alternatively, we could have started this problem by noticing that $y=\left(x^{1 / 2}\right)^{x}=x^{x / 2}$, and then applying $\ln ()$ we get the same as above.)
Now we take the derivative implicitly on both sides and solve for y^{\prime} :

$$
\begin{aligned}
\frac{y^{\prime}}{y} & =\frac{x}{2} \cdot \frac{1}{x}+\frac{1}{2} \ln (x) \quad \text { (notice that we used the product rule) } \\
& =2+\frac{\ln (x)}{2} \quad \text { (simplifying) } \\
y^{\prime} & =\left(2+\frac{\ln (x)}{2}\right) y \\
& =\left(2+\frac{\ln (x)}{2}\right) \sqrt{x}^{x}
\end{aligned}
$$

§3.3 \#58. Find y^{\prime} if $x^{y}=y^{x}$.
First we need to apply $\ln ()$ to get the variables out of the exponents. We have

$$
\begin{aligned}
\ln \left(x^{y}\right) & =\ln \left(y^{x}\right) \\
y \ln (x) & =x \ln (y)
\end{aligned}
$$

Now we take the derivative implicitly and solve for y^{\prime} :

$$
\begin{aligned}
\frac{y}{x}+\ln (x) y^{\prime} & =\frac{x}{y} y^{\prime}+\ln (y) \\
\ln (x) y^{\prime}-\frac{x}{y} y^{\prime} & =\ln (y)-\frac{y}{x} \\
\left(\ln (x)-\frac{x}{y}\right) y^{\prime} & =\ln (y)-\frac{y}{x} \\
y^{\prime} & =\frac{\ln (y)-\frac{y}{x}}{\ln (x)-\frac{x}{y}}
\end{aligned}
$$

