\S 14-C (E), 3.5 (S)

§3.5 #16, 22. Find the derivative of the function and simplify.

§3.5 #16.
$$y = \sqrt{\tan^{-1}(x)}$$

We have

$$y' = \frac{1}{2} \left(\tan^{-1}(x) \right)^{-1/2} \cdot \frac{1}{1+x^2}$$
$$= \boxed{\frac{1}{2(1+x^2)\sqrt{\tan^{-1}(x)}}}$$

§3.5 #22. $h(t) = e^{\sec^{-1}(t)}$

From #14, we know (and have hopefully proved!) that $\frac{d}{dt}(\sec^{-1}(t)) = \frac{1}{t\sqrt{t^2-1}}$. Therefore we have

$$h'(t) = e^{\sec^{-1}(t)} \cdot \frac{1}{t\sqrt{t^2 - 1}}$$
$$= \boxed{\frac{e^{\sec^{-1}(t)}}{t\sqrt{t^2 - 1}}}$$

3.5 # 42.*

(a) Sketch the graph of the function $f(x) = \sin(\sin^{-1}(x))$.

The domain of $\sin^{-1}(x)$ is $-1 \le x \le 1$. We know that for all such x, $\sin(\sin^{-1}(x)) = x$. So the graph of f(x) is identical to that of y = x, except with the domain restricted to $-1 \le x \le 1$ (next page, left).

(b) Sketch the graph of the function $g(x) = \sin^{-1}(\sin(x))$ for all $x \in \mathbb{R}$.

The domain of sin(x) is \mathbb{R} (all real numbers). Therefore this is the domain of g(x), so we will have to figure out what happens for all x.

Quadrants IV and I. The range of $\sin^{-1}(x)$ is $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$. We know that for all x in this interval, $\sin^{-1}(\sin(x)) = x$. Since g(x) is periodic with period 2π , the graph will repeat itself for all angles in quadrants IV in I (the preferred interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ consists of angles in quadrants IV and I).

- **Quadrant II.** If x is an angle in quadrant II, say between $\frac{\pi}{2}$ and π , then $\sin(x)$ is positive. Therefore $\sin^{-1}(\sin(x))$ will also come out positive; in fact it will be the reference angle for x in the first quadrant, which is πx . So the graph of g(x) will look like the line $y = \pi x$ for all x in the interval $\left[\frac{\pi}{2}, \pi\right]$. Since g(x) is periodic, the graph will repeat itself for all angles in quadrant II.
- **Quadrant III.** If x is an angle in quadrant III, say between π and $\frac{3\pi}{2}$, then $\sin(x)$ is negative. Therefore $\sin^{-1}(\sin(x))$ will also come out negative; in fact (recalling some heavy-duty trigonometry from your youth) it will be πx , the angle in quadrant IV having the same reference angle as that of x. So the graph of g(x) will look like the line $y = \pi x$ for all x in the interval $\left[\pi, \frac{3\pi}{2}\right]$. Since g(x) is periodic, the graph will repeat itself for all angles in quadrant III.

Whew! After all that, we get the graph shown (below right).

(c) Show that
$$g'(x) = \frac{\cos x}{|\cos x|}$$
.

We have

$$g'(x) = \frac{1}{\sqrt{1 - (\sin(x))^2}} \cdot \cos(x)$$

= $\frac{\cos x}{\sqrt{1 - \sin^2 x}}$
= $\frac{\cos x}{\sqrt{\cos^2 x}}$ (by the Pythagorean identity $\sin^2 x + \cos^2 x = 1$)
= $\frac{\cos x}{|\cos x|}$.

Another way to look at this is to consider the graph of g(x). From the properties of

absolute values, we know that

$$\frac{\cos x}{|\cos x|} = \begin{cases} \frac{\cos x}{\cos x} & \text{if } \cos x > 0\\ \frac{\cos x}{-\cos x} & \text{if } \cos x < 0\\ \text{undefined} & \text{if } \cos x = 0 \end{cases}$$

which simplifies to

$$\begin{cases} 1 & \text{if } x \text{ is in quadrant IV or I (or in between)} \\ -1 & \text{if } x \text{ is in quadrant II or III (or in between)} & (1) \\ \text{undefined} & \text{if } x \text{ is an odd multiple of } \frac{\pi}{2} \end{cases}$$

From the graph of g(x) in part (b), we can see that the slope of the graph is 1 in quadrants IV and I (and in between, i.e. at multiples of 2π) and -1 in quadrants II and III (and in between, i.e. at odd multiples of π such as 3π , 5π , $-\pi$, etc.). You can also see that g(x) is not differentiable at odd multiples of $\frac{\pi}{2}$ ($\frac{\pi}{2}$, $\frac{3\pi}{2}$, etc.) since there are sharp corners there. Therefore the derivative of g(x) is exactly as given above in formula (1), so $g'(x) = \frac{\cos x}{|\cos x|}$.

(d) Sketch the graph of $h(x) = \cos^{-1}(\sin(x))$ for $x \in \mathbb{R}$ and find its derivative.

We can do an analysis similar to that in (b) to find the graph. It will also be a piecewise straight-line graph. For instance, if x is an acute angle, then we know that $\cos^{-1}(\sin x)$ is the complement of x, i.e. $\frac{\pi}{2} - x$. Also, the range of h(x) is $[0, \pi]$, so we can expect the entire graph to be on or above the x-axis. We can get an idea of what the rest of the graph looks like by plotting key points in each quadrant:

x	$\sin(x)$	$\cos^{-1}(\sin(x))$
0	0	$\frac{\pi}{2}$
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\pi}{3}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{\frac{\pi}{2}}{\frac{\pi}{3}}$ $\frac{\pi}{6}$ 0
$\frac{\pi}{2}$	1	0
$\frac{2\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{\pi}{6}$
$\frac{5\pi}{6}$	$\frac{1}{2}$	$\frac{\pi}{3}$
π	0	$\frac{\pi}{2}$
$\frac{4\pi}{3}$	$ \begin{array}{c} \frac{1}{2} \\ \frac{\sqrt{3}}{2} \\ 1 \\ \frac{\sqrt{3}}{2} \\ \frac{1}{2} \\ 0 \\ -\frac{\sqrt{3}}{2} \\ -1 \end{array} $	$\frac{\frac{\pi}{6}}{\frac{\pi}{3}}$ $\frac{\frac{\pi}{2}}{\frac{5\pi}{6}}$ 0
$\frac{3\pi}{2}$	-1	0
$\frac{\frac{\pi}{6}}{\frac{\pi}{3}}$ $\frac{\frac{\pi}{2}}{\frac{5\pi}{6}}$ $\frac{2\pi}{3}$ $\frac{5\pi}{6}$ $\frac{4\pi}{3}$ $\frac{3\pi}{2}$ $\frac{5\pi}{3}$	$-\frac{\sqrt{3}}{2}$	$\frac{5\pi}{6}$

We get the graph shown (above right). The derivative of h(x) is

$$h'(x) = -\frac{1}{\sqrt{1 - (\sin(x))^2}} \cdot \cos(x)$$
$$= -\frac{\cos x}{\sqrt{1 - \sin^2 x}}$$
$$= -\frac{\cos x}{\sqrt{\cos^2 x}} \quad \text{(by the Pythagorean identity } \sin^2 x + \cos^2 x = 1)$$
$$= \boxed{-\frac{\cos x}{|\cos x|}}$$

Alternatively, from the graph we can see that the derivative of h(x) is

$$h'(x) = \begin{cases} 1 & \text{if } x \text{ is in quadrant II or III (or in between}) \\ -1 & \text{if } x \text{ is in quadrant IV or I (or in between}) \\ \text{undefined} & \text{if } x \text{ is an odd multiple of } \frac{\pi}{2} \end{cases}$$

(which happens to be equal to $-\frac{\cos x}{|\cos x|}$).