Math 75B Selected Homework Solutions
§§14-C (E), 3.5 (S)
§3.5 \#16, 22. Find the derivative of the function and simplify.
$\S 3.5 \# 16 . y=\sqrt{\tan ^{-1}(x)}$
We have

$$
\begin{aligned}
y^{\prime} & =\frac{1}{2}\left(\tan ^{-1}(x)\right)^{-1 / 2} \cdot \frac{1}{1+x^{2}} \\
& =\frac{1}{2\left(1+x^{2}\right) \sqrt{\tan ^{-1}(x)}}
\end{aligned}
$$

§3.5 \#22. $h(t)=e^{\sec ^{-1}(t)}$
From $\# 14$, we know (and have hopefully proved!) that $\frac{d}{d t}\left(\sec ^{-1}(t)\right)=\frac{1}{t \sqrt{t^{2}-1}}$. Therefore we have

$$
\begin{aligned}
h^{\prime}(t) & =e^{\sec ^{-1}(t)} \cdot \frac{1}{t \sqrt{t^{2}-1}} \\
& =\frac{e^{\sec ^{-1}(t)}}{t \sqrt{t^{2}-1}}
\end{aligned}
$$

§3.5 \#42.*
(a) Sketch the graph of the function $f(x)=\sin \left(\sin ^{-1}(x)\right)$.

The domain of $\sin ^{-1}(x)$ is $-1 \leq x \leq 1$. We know that for all such $x, \sin \left(\sin ^{-1}(x)\right)=x$. So the graph of $f(x)$ is identical to that of $y=x$, except with the domain restricted to $-1 \leq x \leq 1$ (next page, left).
(b) Sketch the graph of the function $g(x)=\sin ^{-1}(\sin (x))$ for all $x \in \mathbb{R}$.

The domain of $\sin (x)$ is \mathbb{R} (all real numbers). Therefore this is the domain of $g(x)$, so we will have to figure out what happens for all x.
Quadrants IV and I. The range of $\sin ^{-1}(x)$ is $-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}$. We know that for all x in this interval, $\sin ^{-1}(\sin (x))=x$. Since $g(x)$ is periodic with period 2π, the graph will repeat itself for all angles in quadrants IV in I (the preferred interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ consists of angles in quadrants IV and I).

Quadrant II. If x is an angle in quadrant II, say between $\frac{\pi}{2}$ and π, then $\sin (x)$ is positive. Therefore $\sin ^{-1}(\sin (x))$ will also come out positive; in fact it will be the reference angle for x in the first quadrant, which is $\pi-x$. So the graph of $g(x)$ will look like the line $y=\pi-x$ for all x in the interval $\left[\frac{\pi}{2}, \pi\right]$. Since $g(x)$ is periodic, the graph will repeat itself for all angles in quadrant II.
Quadrant III. If x is an angle in quadrant III, say between π and $\frac{3 \pi}{2}$, then $\sin (x)$ is negative. Therefore $\sin ^{-1}(\sin (x))$ will also come out negative; in fact (recalling some heavy-duty trigonometry from your youth) it will be $\pi-x$, the angle in quadrant IV having the same reference angle as that of x. So the graph of $g(x)$ will look like the line $y=\pi-x$ for all x in the interval $\left[\pi, \frac{3 \pi}{2}\right]$. Since $g(x)$ is periodic, the graph will repeat itself for all angles in quadrant III.
Whew! After all that, we get the graph shown (below right).

(c) Show that $g^{\prime}(x)=\frac{\cos x}{|\cos x|}$.

We have

$$
\begin{aligned}
g^{\prime}(x) & =\frac{1}{\sqrt{1-(\sin (x))^{2}}} \cdot \cos (x) \\
& =\frac{\cos x}{\sqrt{1-\sin ^{2} x}} \\
& =\frac{\cos x}{\sqrt{\cos ^{2} x}} \quad\left(\text { by the Pythagorean identity } \sin ^{2} x+\cos ^{2} x=1\right) \\
& =\frac{\cos x}{|\cos x|} .
\end{aligned}
$$

Another way to look at this is to consider the graph of $g(x)$. From the properties of
absolute values, we know that

$$
\frac{\cos x}{|\cos x|}= \begin{cases}\frac{\cos x}{\cos x} & \text { if } \cos x>0 \\ \frac{\cos x}{-\cos x} & \text { if } \cos x<0 \\ \text { undefined } & \text { if } \cos x=0\end{cases}
$$

which simplifies to

$$
\begin{cases}1 & \text { if } x \text { is in quadrant IV or I (or in between) } \tag{1}\\ -1 & \text { if } x \text { is in quadrant II or III (or in between) } \\ \text { undefined } & \text { if } x \text { is an odd multiple of } \frac{\pi}{2}\end{cases}
$$

From the graph of $g(x)$ in part (b), we can see that the slope of the graph is 1 in quadrants IV and I (and in between, i.e. at multiples of 2π) and -1 in quadrants II and III (and in between, i.e. at odd multiples of π such as $3 \pi, 5 \pi,-\pi$, etc.). You can also see that $g(x)$ is not differentiable at odd multiples of $\frac{\pi}{2}\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right.$, etc.) since there are sharp corners there. Therefore the derivative of $g(x)$ is exactly as given above in formula (1), so $g^{\prime}(x)=\frac{\cos x}{|\cos x|}$.
(d) Sketch the graph of $h(x)=\cos ^{-1}(\sin (x))$ for $x \in \mathbb{R}$ and find its derivative.

We can do an analysis similar to that in (b) to find the graph. It will also be a piecewise straight-line graph. For instance, if x is an acute angle, then we know that $\cos ^{-1}(\sin x)$ is the complement of x, i.e. $\frac{\pi}{2}-x$. Also, the range of $h(x)$ is $[0, \pi]$, so we can expect the entire graph to be on or above the x-axis. We can get an idea of what the rest of the graph looks like by plotting key points in each quadrant:

x	$\sin (x)$	$\cos ^{-1}(\sin (x))$
0	0	$\frac{\pi}{2}$
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\pi}{3}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{\pi}{6}$
$\frac{\pi}{2}$	1	0
$\frac{2 \pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{\pi}{6}$
$\frac{5 \pi}{6}$	$\frac{1}{2}$	$\frac{\pi}{3}$
π	0	$\frac{\pi}{2}$
$\frac{4 \pi}{3}$	$-\frac{\sqrt{3}}{2}$	$\frac{5 \pi}{6}$
$\frac{3 \pi}{2}$	-1	0
$\frac{5 \pi}{3}$	$-\frac{\sqrt{3}}{2}$	$\frac{5 \pi}{6}$

We get the graph shown (above right).
The derivative of $h(x)$ is

$$
\begin{aligned}
h^{\prime}(x) & =-\frac{1}{\sqrt{1-(\sin (x))^{2}}} \cdot \cos (x) \\
& =-\frac{\cos x}{\sqrt{1-\sin ^{2} x}} \\
& \left.=-\frac{\cos x}{\sqrt{\cos ^{2} x}} \quad \text { (by the Pythagorean identity } \sin ^{2} x+\cos ^{2} x=1\right) \\
& =-\frac{\cos x}{|\cos x|}
\end{aligned}
$$

Alternatively, from the graph we can see that the derivative of $h(x)$ is

$$
h^{\prime}(x)= \begin{cases}1 & \text { if } x \text { is in quadrant II or III (or in between) } \\ -1 & \text { if } x \text { is in quadrant IV or I (or in between) } \\ \text { undefined } & \text { if } x \text { is an odd multiple of } \frac{\pi}{2}\end{cases}
$$

(which happens to be equal to $-\frac{\cos x}{|\cos x|}$).

