Math 75B Selected Homework Solutions

Completeness:	13	(1 point each problem)
Format:	10	
Total:	23	points
	$(+4$	possible bonus points $)$

3.7 \#6, 10, 28, 33, 41*

16-A \#2, 3, 7
$4.1 \# 12,17,20,24,32,47,56^{*}$
§3.7 $\#$ 33. Find the limit $\lim _{x \rightarrow 0}(1-2 x)^{1 / x}$.
This is an indeterminate form of type $1^{ \pm \infty}$, so we use logarithms to help us get the answer.
Let $L=\lim _{x \rightarrow 0}(1-2 x)^{1 / x}$. Then

$$
\begin{aligned}
\ln (L) & =\ln \left(\lim _{x \rightarrow 0}(1-2 x)^{1 / x}\right) \\
& =\lim _{x \rightarrow 0} \ln \left((1-2 x)^{1 / x}\right) \\
& =\lim _{x \rightarrow 0} \frac{1}{x} \ln (1-2 x) \\
& =\lim _{x \rightarrow 0} \frac{\ln (1-2 x)}{x} \quad " \frac{0}{0} " \\
& =\frac{\mathrm{H}}{=} \lim _{x \rightarrow 0} \frac{\frac{-2}{1-2 x}}{1} \\
& =\lim _{x \rightarrow 0} \frac{-2}{1-2 x}=-2 .
\end{aligned}
$$

Therefore $L=e^{-2}=\frac{1}{e^{2}}$
§3.7 \#41.* If an initial amount A_{0} of money is invested at an interest rate r compounded n times per year, the value of the investment after t years is

$$
A=A_{0}\left(1+\frac{r}{n}\right)^{n t}
$$

Show that if interest is compounded continuously (i.e. taking the limit of the above as $n \rightarrow \infty)$, then the balance after t years is

$$
A=A_{0} e^{r t}
$$

The limit

$$
\lim _{n \rightarrow \infty} A_{0}\left(1+\frac{r}{n}\right)^{n t}=A_{0} \lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n t}
$$

is an indeterminate form of type 1^{∞}, so we use logarithms to help us get the answer. Let $L=\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n t}$ (the number A_{0} is a constant multiple, so we can put that back on at
the end of the problem). Then

$$
\begin{aligned}
\ln (L) & =\ln \left(\lim _{n \rightarrow \infty}\left(1+\frac{r}{n}\right)^{n t}\right) \\
& =\lim _{n \rightarrow \infty}\left(n t \ln \left(1+\frac{r}{n}\right)\right) \\
& =t \cdot \lim _{n \rightarrow \infty} n \ln \left(1+\frac{r}{n}\right) \quad \text { (as far as the limit is concerned, } t \text { is a constant!) }
\end{aligned}
$$

Now: neat trick! As $n \rightarrow \infty, \frac{1}{n} \rightarrow 0^{+}$. So we may get the same answer by replacing n with $\frac{1}{n}$ and taking the limit as the new n goes to 0 from the right:

$$
\begin{aligned}
& =t \cdot \lim _{n \rightarrow 0^{+}} \frac{1}{n} \ln (1+r n) \\
& =t \cdot \lim _{n \rightarrow 0^{+}} \frac{\ln (1+r n)}{n} \quad \text { " } \frac{0}{0} " \\
& =t \cdot \lim _{n \rightarrow 0^{+}} \frac{r}{1+r n} \quad \text { (remember that } r \text { is constant) } \\
& =t \cdot r=r t .
\end{aligned}
$$

Therefore $L=e^{r t}$, and $A=A_{0} e^{r t}$.
$\S 4.1 \# 12$. Sketch a graph of a function defined on the interval $[-1,2]$ that has
(a) An absolute maximum but no local maximum
(b) A local maximum but no absolute maximum.
(a) There are many possible solutions. Here is one:

(b) We must take care here! The Extreme Value Theorem guarantees that a function defined on a closed interval always has an absolute maximum, as long as the function is continuous on the interval. So if we want a function defined on $[-1,2]$ that has NO absolute maximum, we will have to use an example that is not continuous. Here is one possible solution:

§4.1\#32. Find all critical numbers of $G(x)=\sqrt[3]{x^{2}-x}$.
Recall that there are two types of critical numbers:

- Those that, when plugged in, make the derivative equal to zero, and
- Those that make the derivative undefined (but still are in the domain of the function).

The domain of $G(x)$ is all real numbers. So any number that makes $G^{\prime}(x)$ either 0 or undefined will be a critical number of $G(x)$. We have

$$
G^{\prime}(x)=\frac{1}{3}\left(x^{2}-x\right)^{-2 / 3}(2 x-1)=\frac{2 x-1}{3\left(x^{2}-x\right)^{2 / 3}} .
$$

Taking each type of critical number separately, we have

- $G^{\prime}(x)$ is equal to zero when the numerator $2 x-1$ is equal to 0 . In other words,

$$
\begin{gathered}
G^{\prime}(x)=\frac{2 x-1}{3\left(x^{2}-x\right)^{2 / 3}} \stackrel{\text { set }}{=} 0 \\
2 x-1=0 \\
x=\frac{1}{2}
\end{gathered}
$$

- $G^{\prime}(x)$ is undefined when the denominator $3\left(x^{2}-x\right)^{2 / 3}$ is equal to 0 . Solving for x we get

$$
\begin{gathered}
3\left(x^{2}-x\right)^{2 / 3}=0 \\
x^{2}-x=0 \\
x(x-1)=0 \\
x=0, x=1
\end{gathered}
$$

Therefore the critical numbers of $G(x)$ are $\frac{1}{2}, 0$, and 1

