Math 75B Selected Homework Solutions

Completeness:	13	(1 point each problem)
Format:	10	
Total:	23	points
	(+4)	possible bonus points)

3.7 #6, 10, 28, 33, 41* **16-A** #2, 3, 7 **4.1** #12, 17, 20, 24, 32, 47, 56*

§3.7 #33. Find the limit $\lim_{x\to 0} (1-2x)^{1/x}$.

This is an indeterminate form of type $1^{\pm\infty}$, so we use logarithms to help us get the answer. Let $L = \lim_{x \to 0} (1 - 2x)^{1/x}$. Then

$$\ln(L) = \ln\left(\lim_{x \to 0} (1 - 2x)^{1/x}\right)$$

= $\lim_{x \to 0} \ln\left((1 - 2x)^{1/x}\right)$
= $\lim_{x \to 0} \frac{1}{x} \ln(1 - 2x)$
= $\lim_{x \to 0} \frac{\ln(1 - 2x)}{x}$ " $\frac{0}{0}$ "
 $\stackrel{\text{H}}{=} \lim_{x \to 0} \frac{\frac{-2}{1 - 2x}}{1}$
= $\lim_{x \to 0} \frac{-2}{1 - 2x} = -2.$

Therefore $L = e^{-2} = \boxed{\frac{1}{e^2}}$

§3.7 #41.* If an initial amount A_0 of money is invested at an interest rate r compounded n times per year, the value of the investment after t years is

$$A = A_0 \left(1 + \frac{r}{n} \right)^{nt}.$$

Show that if interest is compounded continuously (i.e. taking the limit of the above as $n \to \infty$), then the balance after t years is

$$A = A_0 e^{rt}$$

The limit

$$\lim_{n \to \infty} A_0 \left(1 + \frac{r}{n} \right)^{nt} = A_0 \lim_{n \to \infty} \left(1 + \frac{r}{n} \right)^{nt}$$

is an indeterminate form of type 1^{∞} , so we use logarithms to help us get the answer. Let $L = \lim_{n \to \infty} \left(1 + \frac{r}{n}\right)^{nt}$ (the number A_0 is a constant multiple, so we can put that back on at

the end of the problem). Then

$$\ln(L) = \ln\left(\lim_{n \to \infty} \left(1 + \frac{r}{n}\right)^{nt}\right)$$

= $\lim_{n \to \infty} \left(nt \ln\left(1 + \frac{r}{n}\right)\right)$
= $t \cdot \lim_{n \to \infty} n \ln\left(1 + \frac{r}{n}\right)$ (as far as the limit is concerned, t is a constant!)

Now: neat trick! As $n \to \infty$, $\frac{1}{n} \to 0^+$. So we may get the same answer by replacing n with $\frac{1}{n}$ and taking the limit as the *new* n goes to 0 from the right:

$$= t \cdot \lim_{n \to 0^+} \frac{1}{n} \ln(1 + rn)$$

= $t \cdot \lim_{n \to 0^+} \frac{\ln(1 + rn)}{n}$ " $\frac{0}{0}$ "
 $\stackrel{\text{H}}{=} t \cdot \lim_{n \to 0^+} \frac{r}{1 + rn}$ (remember that r is constant)
= $t \cdot r = rt$.

Therefore $L = e^{rt}$, and $A = A_0 e^{rt}$.

§4.1#12. Sketch a graph of a function defined on the interval [-1, 2] that has

- (a) An absolute maximum but no local maximum
- (b) A local maximum but no absolute maximum.
- (a) There are many possible solutions. Here is one:

(b) We must take care here! The Extreme Value Theorem guarantees that a function defined on a closed interval always has an absolute maximum, as long as the function is **continuous** on the interval. So if we want a function defined on [-1,2] that has NO absolute maximum, we will have to use an example that is **not continuous**. Here is one possible solution:

§4.1#32. Find all critical numbers of $G(x) = \sqrt[3]{x^2 - x}$.

Recall that there are two types of critical numbers:

- Those that, when plugged in, make the derivative equal to zero, and
- Those that make the derivative undefined (but still are in the domain of the function).

The domain of G(x) is all real numbers. So any number that makes G'(x) either 0 or undefined will be a critical number of G(x). We have

$$G'(x) = \frac{1}{3}(x^2 - x)^{-2/3}(2x - 1) = \frac{2x - 1}{3(x^2 - x)^{2/3}}.$$

Taking each type of critical number separately, we have

• G'(x) is equal to zero when the numerator 2x - 1 is equal to 0. In other words,

$$G'(x) = \frac{2x - 1}{3(x^2 - x)^{2/3}} \stackrel{\text{set}}{=} 0$$
$$2x - 1 = 0$$
$$x = \frac{1}{2}$$

• G'(x) is undefined when the denominator $3(x^2 - x)^{2/3}$ is equal to 0. Solving for x we get

$$3(x^{2} - x)^{2/3} = 0$$

$$x^{2} - x = 0$$

$$x(x - 1) = 0$$

$$x = 0, x = 1$$

Therefore the critical numbers of G(x) are $\frac{1}{2}$, 0, and 1