Math 75B Selected Homework Solutions

Completeness:	16	(1 point each problem)
Format:	10	
Total:	26	points
	$(+2$	possible bonus points $)$

17-A \#1, 3
17-B \#1, 2
$4.3 \# 6,15,16,30,34$
17-C \#3, 4, 5
$4.4 \# 2,10,38,40,46^{*}$
$\S 4.3 \# 6$. For the function $f(x)=x^{2} e^{x}$,
(a) Find the intervals on which f is increasing or decreasing.

The domain of $f(x)$ is all real numbers. We have $f^{\prime}(x)=x^{2} e^{x}+2 x e^{x}=x e^{x}(x+2)$, which is defined everywhere. Setting $f^{\prime}(x)$ equal to 0 we get

$$
\begin{gather*}
x e^{x}(x+2)=0 \tag{1}\\
x=0 ; \quad x=-2
\end{gather*}
$$

(e^{x} can never be equal to 0). So we test the intervals $(-\infty,-2),(-2,0)$ and $(0, \infty)$ using the formula in (1):

$$
\begin{aligned}
f^{\prime}(-10) & =(-)(+)(-)=(+) \\
f^{\prime}(-1) & =(-)(+)(+)=(-) \\
f^{\prime}(1) & =(+)(+)(+)=(+)
\end{aligned}
$$

Therefore the function is increasing on the intervals $(-\infty,-2)$ and $(0, \infty)$ and decreasing on the interval $(-2,0)$
(b) Find the local maximum and minimum values of f.

From part (a), there is a local maximum of $f(x)$ at $x=-2$ and a local minimum at $x=0$. Plugging these numbers into $f(x)$ we have that the local maximum value is $f(-2)=(-2)^{2} e^{-2}=\frac{4}{e^{2}}$ and the local minimum value is $f(0)=0^{2} e^{0}=0$
(c) Find the intervals of concavity and the inflection points.

We repeat the above procedure with the second derivative: we have $f^{\prime \prime}(x)=x^{2} e^{x}+$ $2 x e^{x}+2 x e^{x}+2 e^{x}=e^{x}\left(x^{2}+4 x+2\right)$, which is defined everywhere. Setting $f^{\prime \prime}(x)$ equal to 0 we get

$$
\begin{gather*}
e^{x}\left(x^{2}+4 x+2\right)=0 \tag{2}\\
x=-2+\sqrt{2} \approx-0.585 ; \quad x=-2-\sqrt{2} \approx-3.414
\end{gather*}
$$

(using the quadratic formula). So we test the intervals $(-\infty,-2-\sqrt{2}),(-2-\sqrt{2},-2+$ $\sqrt{2})$ and $(-2+\sqrt{2}, \infty)$ using the formula in (2):

$$
\begin{aligned}
& f^{\prime \prime}(-10)=(+)(+)=(+) \\
& f^{\prime \prime}(-1)=(+)(-)=(-) \\
& f^{\prime \prime}(0)=(+)(+)=(+)
\end{aligned}
$$

Therefore $f(x)$ is concave up on the intervals $(-\infty,-2-\sqrt{2})$ and $(-2+\sqrt{2}, \infty)$ and concave down on the interval $(-2-\sqrt{2},-2+\sqrt{2})$.

Since the concavity changes at $x=-2 \pm \sqrt{2}$, both are inflection points - or, more precisely, the inflection points are $\left(-2 \pm \sqrt{2},(-2 \pm \sqrt{2})^{2} e^{-2 \pm \sqrt{2}}\right)$
$\S 4.3 \# \mathbf{3 0}$. For the function $B(x)=3 x^{2 / 3}-x$,
(a) Find the intervals of increase or decrease.

We proceed similar to $\# 6$ above: the domain is all real numbers. We have

$$
\begin{gathered}
B^{\prime}(x)=2 x^{-1 / 3}-1 \stackrel{\text { set }}{=} 0 \\
\frac{2}{x^{1 / 3}}=1 \\
x^{1 / 3}=2 \\
x=8 .
\end{gathered}
$$

Also the derivative is undefined at $x=0$, so this is also a critical number.

$$
\begin{aligned}
B^{\prime}(-1) & =\frac{2}{-1}-1=(-) \\
B^{\prime}(1) & =\frac{2}{1}-1=(+) \\
B^{\prime}(27) & =\frac{2}{3}-1=(-)
\end{aligned}
$$

Therefore $B(x)$ is increasing on the interval $(0,8)$ and decreasing on the intervals $(-\infty, 0)$ and $(8, \infty)$
(b) Find the local maximum and minimum values.

From part (a), there is a local minimum of $B(x)$ at $x=0$ and a local maximum at $x=8$. Plugging these numbers into $B(x)$ we have that the local minimum value is $B(0)=0-0=0$ and the local maximum value is $B(8)=3 \cdot 8^{2 / 3}-8=4$
(c) Find the intervals of concavity and the inflection points.

We have $B^{\prime \prime}(x)=-\frac{2}{3} x^{-4 / 3}=-\frac{2}{3 x^{4 / 3}}$, which is never equal to 0 and is only undefined at $x=0$. Therefore we have

$$
\begin{aligned}
B^{\prime \prime}(-1) & =-\frac{2}{3}<0 \\
B^{\prime \prime}(1) & =-\frac{2}{3}<0
\end{aligned}
$$

(feel free to draw in your own number line here). Therefore $B(x)$ is concave down on the intervals $(-\infty, 0)$ and $(0, \infty)$
and is never concave up.
Since the concavity does not change at $x=0$, there is no inflection point
(d) Use information from parts (a) - (c) to sketch the graph. The graph is shown at right.
$\S 4.4 \# 40$. Use the guidelines of this section to sketch the curve $f(x)=x(\ln (x))^{2}$.
Note. For this problem it is useful to remember that $\ln \left(e^{a}\right)=a$. In particular, if a is negative, we get facts like $\ln \left(\frac{1}{e^{2}}\right)=\ln \left(e^{-2}\right)=-2$.
(a) Domain. The domain of $f(x)$ is $x>0$
(b) Intercepts. There is no y-intercept, since $f(0)$ is not defined. To get x-intercepts, set $f(x)=0$:

$$
x(\ln (x))^{2}=0
$$

$$
x=0 \text { (not a valid number in the domain); } \quad \ln (x)=0
$$

$$
x=1
$$

Therefore the only x-intercept is the point $(1,0)$
(c) Symmetry. Since $f(-x)$ is undefined for $x>0, f(x)$ is neither even nor odd, nor is it periodic.
(d) Asymptotes. We have

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} x(\ln (x))^{2} \\
= & \left.\lim _{x \rightarrow 0^{+}} \frac{(\ln (x))^{2}}{\frac{1}{x}} \quad \text { (this is an indeterminate form of type } 0 \cdot \infty\right) \\
\stackrel{\mathrm{H}}{=} & \lim _{x \rightarrow 0^{+}} \frac{2(\ln (x)) \cdot \frac{1}{x}}{-\frac{1}{x^{2}}} \\
= & \lim _{x \rightarrow 0^{+}}-2 x \ln (x) \\
= & (0 \cdot \infty \text { again }) \\
= & \lim _{x \rightarrow 0^{+}} \frac{-2 \ln (x)}{\frac{1}{x}} \\
\stackrel{H}{=} & \lim _{x \rightarrow 0^{+}} \frac{-\frac{\infty}{x}}{-\frac{1}{x^{2}}} \\
= & \lim _{x \rightarrow 0^{+}} 2 x=0 .
\end{aligned}
$$

Whew! So there will be an open circle at the origin, but no vertical asymptotes We also have $\lim _{x \rightarrow \infty} x(\ln (x))^{2}=\infty$, so there will be no horizontal asymptotes
(e) Increase/Decrease. We have $f^{\prime}(x)=2 x \ln (x) \cdot \frac{1}{x}+(\ln (x))^{2}=2 \ln (x)+(\ln (x))^{2}=$ $\ln (x)(2+\ln (x))$. Setting this equal to 0 we get

$$
\begin{gathered}
\ln (x)=0 ; \quad 2+\ln (x)=0 \\
x=1 ; \quad \ln (x)=-2 \\
x=1 ; \quad x=e^{-2}=\frac{1}{e^{2}}
\end{gathered}
$$

The derivative is defined for all $x>0$, so there are no other critical numbers.

$$
\begin{aligned}
f^{\prime}\left(\frac{1}{e^{4}}\right) & =(-4)(2-4)=(+) \\
f^{\prime}\left(\frac{1}{e}\right) & =(-1)(2-1)=(-) \\
f^{\prime}(e) & =(1)(2+1)=(+)
\end{aligned}
$$

$$
\begin{aligned}
f^{\prime}\left(\frac{1}{e}\right) & =(-1)(2-1)=(-) & f^{\prime}(x) & \circ++++\cdots \cdots+\cdots+\cdots+++++ \\
f^{\prime}(e) & =(1)(2+1)=(+) & 0 & \frac{1}{\mathrm{e}^{2}}
\end{aligned}
$$

Therefore the function is increasing on the intervals $\left(0, \frac{1}{e^{2}}\right)$ and $(1, \infty)$ and decreasing on the interval $\left(\frac{1}{e^{2}}, 1\right)$
(f) Local Max/Min Values. We have $f\left(\frac{1}{e^{2}}\right)=\frac{1}{e^{2}} \cdot\left(\ln \left(e^{-2}\right)\right)^{2}=\frac{4}{e^{2}}$ (local max. value) and $f(1)=1 \cdot(\ln (1))^{2}=0$ (local min. value)
(g) Concavity/Inflection Points. We have $f^{\prime \prime}(x)=\frac{2}{x}+2 \ln (x) \cdot \frac{1}{x}=\frac{2}{x}(1+\ln (x))$.

Setting this equal to 0 we get

$$
\begin{gathered}
1+\ln (x)=0 \\
x=e^{-1}=\frac{1}{e} \\
f^{\prime \prime}\left(\frac{1}{e^{2}}\right)=(+)(1-2)=(-) \\
f^{\prime}(1)=2 \cdot 1=(+)
\end{gathered}
$$

(feel free to draw in your own number line here).
Therefore $f(x)$ is $\begin{aligned} & \text { concave down on the interval }\left(0, \frac{1}{e}\right) \\ & \text { and concave up on the interval }\left(\frac{1}{e}, \infty\right) .\end{aligned}$
We have $f\left(\frac{1}{e}\right)=\frac{1}{e}(-1)^{2}=\frac{1}{e}$. Since the concavity changes at $x=\frac{1}{e}$, there is an inflection point $\left(\frac{1}{e}, \frac{1}{e}\right)$
(h) The Graph.

