Math 75B Selected Homework Solutions
16-B \#1, 2, 4
$4.5 \# 2,12,21,32,43^{*}$

Completeness: 14 (2 points each)

Format: 1

Total:	24	points
	$(+2$	possible bonus points $)$

$\S 4.5 \# 12$. A box with no top, whose length is twice its width, is to have a volume of $10 \mathrm{~m}^{3}$. It is to be made from material costing $\$ 10$ per square meter for the base, and $\$ 6$ per square meter for the sides. What is the minimum cost?

The objective of the problem is to minimize the cost, so we must write a formula for the cost of the box. First we assign names to the dimensions of the box, as shown. The problem says that the length of the base is twice the width, so we let x be the width and then the length is $2 x$.

The area of the base is $2 x \cdot x=2 x^{2}$, so the cost of the base is $10 \cdot 2 x^{2}=20 x^{2}$ (dollars). Similarly, the area of the sides is $2 x y+2(2 x \cdot y)=6 x y$, so the cost of the sides is $6 \cdot 6 x y=$ $36 x y$. Therefore the cost of the entire box, in dollars, is

$$
C=20 x^{2}+36 x y .
$$

We know that the volume of the box is $10 \mathrm{~m}^{2}$, so we have

$$
\begin{gathered}
2 x \cdot x \cdot y=10 \\
2 x^{2} y=10 \\
y=\frac{10}{2 x^{2}}=\frac{5}{x^{2}} .
\end{gathered}
$$

Plugging this into the cost formula, we get

$$
\begin{aligned}
C & =20 x^{2}+36 x\left(\frac{5}{x^{2}}\right) \\
& =20 x^{2}+\frac{180}{x} .
\end{aligned}
$$

Now we can take the derivative in order to find the maximum value of C. We have

$$
\begin{gathered}
C^{\prime}(x)=40 x-\frac{180}{x^{2}} \stackrel{\text { set }}{=} 0 \\
40 x=\frac{180}{x^{2}} \\
40 x^{3}=180 \\
x^{3}=\frac{180}{40}=\frac{9}{2} \\
x=\sqrt[3]{\frac{9}{2}}
\end{gathered}
$$

You can check that this represents the x-value that gives the absolute minimum of the function $C(x)$.
Rereading the problem, we see that the problem asks us for the minimum cost. So

$$
C\left(\sqrt[3]{\frac{9}{2}}\right)=20\left(\sqrt[3]{\frac{9}{2}}\right)^{2}+\frac{180}{\sqrt[3]{\frac{9}{2}}} \approx \$ 163.54
$$

§4.5 \#32. A woman at point A of a circular lake with radius 2 miles wants to arrive at point C (see figure) in the shortest possible time. She can walk at the rater of $4 \mathrm{mi} . / \mathrm{hr}$. and row a boat at $2 \mathrm{mi} . / \mathrm{hr}$. How should she proceed?

The objective of the problem is to minimize the time. The time she will spend getting from point A to point C is

$$
\begin{aligned}
T & =(\text { time spent rowing })+(\text { time spent walking }) \\
& =\frac{b}{2}+\frac{w}{4}
\end{aligned}
$$

since time is equal to distance divided by (constant) velocity.

Using the geometry facts I noted on the Homework List (scroll down to the bottom), we can express both b and w as functions of the angle θ, where $\theta=0$ represents the path of rowing straight across the lake (and not doing any walking), $\theta=\frac{\pi}{2}$ represents the path of walking around the lake (and not rowing at all), and the angles in between represent the paths of rowing to a point B and walking the rest of the way.
We have $\cos \theta=\frac{b}{4}$, so $b=4 \cos \theta$. Also $w=2 r \theta=4 \theta$. Therefore our formula for time looks like

$$
\begin{aligned}
T & =\frac{4 \cos \theta}{2}+\frac{4 \theta}{4} \\
& =2 \cos \theta+\theta .
\end{aligned}
$$

Now we take the derivative to find the critical numbers. We have

$$
\begin{gathered}
T^{\prime}(\theta)=-2 \sin \theta+1 \stackrel{\text { set }}{=} 0 \\
\sin \theta=\frac{1}{2} \\
\theta=\frac{\pi}{6}
\end{gathered}
$$

(since $0 \leq \theta \leq \frac{\pi}{2}$ as noted above).
Is this how she should proceed, then? Row at an angle of $\frac{\pi}{6}$ and then walk the rest of the way? We'd better check the endpoints as well! We know that the time will be minimized
at one of the following angles: $0, \frac{\pi}{6}$, or $\frac{\pi}{2}$. Let us check each one:

$$
\begin{aligned}
T(0) & =2 \cos (0)+0=2 \text { hours } \\
T\left(\frac{\pi}{6}\right) & =2 \cos \left(\frac{\pi}{6}\right)+\frac{\pi}{6}=2 \cdot \frac{\sqrt{3}}{2}+\frac{\pi}{6} \approx 2.26 \text { hours } \\
T\left(\frac{\pi}{2}\right) & =2 \cos \left(\frac{\pi}{2}\right)+\frac{\pi}{2}=0+\frac{\pi}{2} \approx 1.57 \text { hours }
\end{aligned}
$$

Whoops! It would actually take the longest to row at $\frac{\pi}{6}$! The path that will minimize the time is for her to walk the whole way

