Math 75B Selected Homework Solutions
Completeness: $\quad 16$ (2 points each)
Format:
Total: 10
26 points

12-A \#1, 2
12-B \#4
$2.8 \# 11,14,20,22,28$
$\S 2.8 \# 14$. Use a linear approximation (or differentials) to estimate $\frac{1}{1002}$.
The number 1002 is being plugged into the function $f(x)=\frac{1}{x}$. An "easy" number close to 1002 to plug in is $x_{\text {easy }}=1000$. We have

$$
\begin{array}{ll}
x_{\text {hard }}=1002 & y_{\text {hard }}=\frac{1}{1002} \approx ? ? \\
x_{\text {easy }}=1000 & y_{\text {easy }}=\frac{1}{1000}=0.001 \\
\frac{d x=1002-1000=2}{} &
\end{array}
$$

Solution 1. (tangent line approximation)
First we find the equation of the tangent line to $f(x)$ at $x=1000$, as shown. We have $f^{\prime}(x)=-\frac{1}{x^{2}}$, so the slope of the line is $f^{\prime}(1000)=-\frac{1}{(1000)^{2}}=-\frac{1}{1,000,000}=-0.000001$. Now we plug in ($\left.x_{\text {easy }}, y_{\text {easy }}\right)$ and the above slope to $y=m x+b$ and solve for b :

$$
\begin{gathered}
y=m x+b \\
0.001=-0.000001(1000)+b \\
b=0.001+0.001=0.002 \\
y=-0.000001 x+0.002
\end{gathered}
$$

Now we plug in $x_{\text {hard }}=1002$ to get $y_{\text {approx }}$ (see the picture):

$$
\begin{aligned}
y_{\text {approx }} & =-0.000001(1002)+0.002 \\
& =-\frac{1002}{1000000}+\frac{2}{1000} \\
& =\frac{-1002+2 \cdot 1000}{1000000}=\frac{998}{1000000}=0.000998
\end{aligned}
$$

Solution 2. (differentials)

We have

$$
\begin{gathered}
y=\frac{1}{x} \\
\frac{d y}{d x}=-\frac{1}{x^{2}} \\
d y=-\frac{1}{x^{2}} d x
\end{gathered}
$$

Plugging in $d x=2$ and $x=x_{\text {easy }}=1000$, we get

$$
d y=-\frac{1}{1000^{2}} \cdot 2=-\frac{2}{1000000}=-0.000002
$$

Finally, to get $y_{\text {approx }}$ we take $y_{\text {easy }}+d y$:

$$
y_{\text {easy }}+d y=0.001-0.000002=0.000988
$$

As a reality check, this number is a little bit less than $\frac{1}{1000}=0.001$, as expected. Using a calculator, we can check the accuracy: $\frac{1}{1002}$ is approximately 0.000998004 .

