Math 75B Selected Homework Solutions
$4.2 \# 2,7,13,18,20$
$4.6 \# 1,4,10,12,19,29^{*}$

Completeness:	10	
Format:	10	
Total:	20	points
	$(+2$	possible bonus points $)$

$\S 4.2 \# 18$. Show that the function $f(x)=2 x-1-\sin x$ has exactly one real root.
Strategy: we will use the Intermediate Value Theorem (IVT) to show that $f(x)$ has at least one real root. Then we will use Rolle's Theorem to show that $f(x)$ has at most one real root.

First of all, $f(x)$ is continuous and differentiable everywhere, so both of the above theorems apply.

We have $f(0)=-1<0$ and $f\left(\frac{3 \pi}{2}\right)=2\left(\frac{3 \pi}{2}\right)-1-(-1)=3 \pi>0$, so by IVT there must be at least one root of $f(x)$ between 0 and $\frac{3 \pi}{2}$.

Now using Rolle's Theorem, we have $f^{\prime}(x)=2-\cos x \stackrel{\text { set }}{=} 0$ implies $\cos x=2$, which is impossible. So there is no x for which $f^{\prime}(x)=0$. Therefore by Rolle's Theorem $f(x)$ has at most one real root.

Since $f(x)$ has at least one real root, and also has at most one real root, we conclude that $f(x)$ has exactly one real root.
§4.6 \#10. Use Newton's Method to approximate $\sqrt[7]{1000}$ to 8 decimal places.
Note that $\sqrt[7]{1000}$ is a root of the function $f(x)=x^{7}-1000$, so we can use Newton's Method to approximate this root.

Since $2^{7}=128$ and $3^{7}=2187$, we know that $\sqrt[7]{1000}$ is between 2 and 3 . After experimenting with a calculator, I found that $(2.7)^{7} \approx 1046.03532$, so I decided to let $x_{1}=2.7$. You may choose a different x_{1}, as long as it is between 2 and 3 and you save all the digits in your calculator - though you may need more iterations if your x_{1} is further away.

We have $f^{\prime}(x)=7 x^{6}$; using the formula $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$, I get the numbers in the table below:

n	x_{n}	$f\left(x_{n}\right)$	$f^{\prime}\left(x_{n}\right)$
1	2.7	46.03532	2711.943423
2	2.68302497	0.85923698	2611.237218
3	2.682695916	0.00031607	2609.316311
4	2.682695795		

At this point, $f\left(x_{4}\right)=f(2.682695795)=0$, according to my calculator. Sure enough, my calculator says $\sqrt[7]{1000}=2.682695795$, which is not exactly true but is true to the number of decimal places my calculator keeps track of, which is 9 . So, to 8 decimal places,

$$
\sqrt[7]{1000} \approx 2.68269580
$$

