Math 75B Selected Homework Solutions

| Completeness: | 26 |
| :--- | :--- | :--- |
| Format: | 10 |
| Total: | 36 points |

18-A \#2, 4
18-B \#1, 3
4.7 \#2, 6, 10, 19, 28, 44, 46

19-A \#3, 4
20-A \#4
20-B \#1, 2, 4, 5
$5.2 \# 2,11,16,33,36,38,39,40$
$\S 4.7 \# \mathbf{2 8}$. If $f^{\prime \prime}(t)=2 e^{t}+3 \sin t$ and $f(0)=0$ and $f(\pi)=0$, find $f(t)$.
First, we have $f^{\prime}(t)=2 e^{t}-3 \cos t+C$; therefore $f(t)=2 e^{t}-3 \sin t+C t+D$, where C and D are constants. To find out what C and D are, we use the facts provided. We have

$$
0=f(0)=2 e^{0}-3 \sin (0)+C(0)+D=2+D
$$

so $D=-2$. Also

$$
0=f(\pi)=2 e^{\pi}-3 \sin (\pi)+C(\pi)+(-2)
$$

(since we now know that $D=-2$)

$$
=2 e^{\pi}-\pi C-2
$$

Solving for C we get

$$
\begin{aligned}
& \pi C=2 e^{\pi}-2 \\
& C=\frac{2 e^{\pi}-2}{\pi}
\end{aligned}
$$

Therefore we have

$$
f(t)=2 e^{t}-3 \sin t+\frac{\left(2 e^{\pi}-2\right) t}{\pi}-2
$$

$\S 4.7 \# 44$. A car is traveling at $50 \mathrm{mi} . / \mathrm{hr}$. when the brakes are fully applied, producing a constant deceleration of $22 \mathrm{ft} . / \mathrm{s}^{2}$. What is the distance traveled before the car comes to a stop?

This is a tricky problem. The first tricky part is that the units on the numbers are not the same! We will convert 50 mi . hr . to feet per second to make it match the units on the other number. We have

$$
\frac{50 \mathrm{mi} .}{1 \mathrm{hr} .} \cdot \frac{5280 \mathrm{ft} .}{1 \mathrm{mi} .} \cdot \frac{1 \mathrm{hr} .}{3600 \mathrm{~s}}=\frac{50 \cdot 5280}{3600}=73 . \overline{\mathrm{ft}} . / \mathrm{s} .
$$

For this problem let $t=0$ denote the moment the brakes are applied. We wish to find the distance traveled by the car starting from that point. So we know the following:

$$
\begin{gather*}
v(0)=73 . \overline{3} \tag{1}\\
s(0)=0 \tag{2}
\end{gather*}
$$

where v stands for velocity and s stands for distance.
Recall that distance, velocity, and acceleration are all related via derivatives/antiderivatives as follows:
distance
$\downarrow \uparrow$
velocity
$\downarrow \uparrow$
acceleration
where the down arrow \downarrow means "derivative" and the up arrow \uparrow means "antiderivative." For example, velocity is an antiderivative of acceleration.

We are given that

$$
a(t)=-22 .
$$

Therefore the velocity at time t is $v(t)=\int a(t) d t=\int(-22) d t=-22 t+C$. By (1) we have $73 . \overline{3}=v(0)=-22(0)+C=C$. Thus the velocity formula is now

$$
v(t)=-22 t+73 . \overline{3}
$$

Now we take one more antiderivative to get the distance. We have $s(t)=\int v(t) d t=$ $-11 t^{2}+73 . \overline{3} t+D$. Moreover, by (2) we know that $0=s(0)=0+D$, so $D=0$ and

$$
s(t)=\int v(t) d t=-11 t^{2}+73 . \overline{3} t
$$

If we can figure out how long the car was braking, we can plug this time into $s(t)$ to get the distance traveled by the car during the skid. Observe that, at the end of the skid (when the car comes to a stop), the velocity is 0 . So we know

$$
v\left(t_{f}\right)=-22 t_{f}+73 . \overline{3}=0
$$

where $t_{f}\left(\right.$ read as "t-final") is the time at the end of the skid. Solving for t_{f} we get $t_{f}=\frac{73 . \overline{3}}{22}$. Therefore the distance traveled by the car during the skid is

$$
s\left(t_{f}\right)=-11\left(\frac{73 . \overline{3}}{22}\right)^{2}+73 . \overline{3} \cdot \frac{73 . \overline{3}}{22}=-\frac{(73 . \overline{3})^{2}}{2 \cdot 22}+\frac{(73 . \overline{3})^{2}}{22}=\frac{(73 . \overline{3})^{2}}{44}(-1+2)=122 . \overline{2} \mathrm{ft} .
$$

§4.7 \#46. A car braked with a constant deceleration of $16 \mathrm{ft} . / \mathrm{s}^{2}$, producing skid marks measuring 200 ft . before coming to a stop. How fast was the car traveling when the brakes were first applied?

This problem is similar to $\# 44$, above, but it is even trickier! This time we know that

$$
\begin{gather*}
v\left(t_{f}\right)=0 \tag{3}\\
s(0)=0 \tag{4}\\
s\left(t_{f}\right)=200 \tag{5}
\end{gather*}
$$

and we are supposed to find $v(0)$. We have $a(t)=-16$, so $v(t)=-16 t+C$ and $v(0)=C$. Therefore the problem will be solved by finding C.
We have $s(t)=\int v(t) d t=-8 t^{2}+C t+D$; therefore by (4) $s(0)=D=0$, and $s(t)=-8 t^{2}+C t$. By (5) and (3), respectively, we have

$$
\begin{gather*}
s\left(t_{f}\right)=-8\left(t_{f}\right)^{2}+C t_{f}=200 \tag{6}\\
v\left(t_{f}\right)=-16 t_{f}+C=0
\end{gather*}
$$

Solving the second equation for t_{f} we get $t_{f}=\frac{C}{16}$, which we may then plug into (6) to get

$$
\begin{gathered}
-8\left(\frac{C}{16}\right)^{2}+C\left(\frac{C}{16}\right)=200 \\
\frac{-8 C^{2}}{16 \cdot 16}+\frac{C^{2}}{16}=200 \\
\frac{-C^{2}+2 C^{2}}{2 \cdot 16}=200 \\
C^{2}=200 \cdot 32=100 \cdot 64 \\
C=10 \cdot 8=80
\end{gathered}
$$

So the car was going $80 \mathrm{ft} . / \mathrm{s}(=54 . \overline{54} \mathrm{mi} . / \mathrm{hr}$.$) when the brakes were applied.$
$\S 5.2 \# 36$. Use geometry to evaluate the integral $\int_{0}^{10}|x-5| d x$.
The area to be found is as shown at right.
We have two triangles with base 5 and height 5 , so the total area is

$$
\frac{5 \cdot 5}{2}+\frac{5 \cdot 5}{2}=25
$$

Since the regions lie entirely above the x-axis, all of the area counts positively toward the definite
 integral. Therefore $\int_{0}^{10}|x-5| d x=25$
$\S 5.2 \#$ 38. Evaluate the integral $\int_{1}^{1} x^{2} \cos x d x$.
Since 1 is in the domain of the integrand $x^{2} \cos x$, by the properties of definite integrals we have $\int_{1}^{1} x^{2} \cos x d x=0$ (see the notes from class or the bottom of page 269 of Stewart for more details).
$\S 5.2 \# 40$. If $\int_{1}^{5} f(x) d x=12$ and $\int_{4}^{5} f(x) d x=3.6$, find $\int_{1}^{4} f(x) d x$.
By the properties of integrals, we know that $\int_{1}^{4} f(x) d x+\int_{4}^{5} f(x) d x=\int_{1}^{5} f(x) d x$. Therefore we have $\int_{1}^{4} f(x) d x+3.6=12$, so $\int_{1}^{4} f(x) d x=12-3.6=8.4$

