\qquad
Fall 2008
Ch. 17 (E) and $\S 4.3,4.4$ (S)
Please read directions carefully. Raise your hand if you are not sure what a problem is asking. You must explain your work thoroughly and unambiguously to receive full credit on questions or parts of questions designated as Work and Answer.
No calculators or notes are allowed on this quiz.
Please note that there is a problem on the back.

Multiple Choice. (6 points) Circle the letter of the best answer.

1. The function $g(x)=x^{3}+3 x^{2}-9 x+1$, whose derivative is $g^{\prime}(x)=3 x^{2}+6 x-9$,
(a) has a local maximum at $x=1$
(b) has a local minimum at $x=1$
(c) has a critical number $x=1$ which is neither a local maximum nor a local minimum.
(d) has an inflection point at $x=1$
2. The function $f(x)$ pictured at right is
(a) an even function
(b) an odd function
(c) neither an even nor an odd function

Graph. (8 points) On the axes below, sketch the graph of a function $f(x)$ satisfying all of the following:

- $f(x)$ is decreasing for all $x<0$
- $f(x)$ is concave up for all $x<1$
- $f(x)$ has an inflection point at $x=1$
- $f(x)$ has a local maximum at $x=2$

Work and Answer. (6 points) You must show all relevant work to receive full credit.
For the function $f(x)=\frac{1}{4} x^{4}-x^{3}+7$, find the interval(s) on which $f(x)$ is increasing and the interval(s) on which $f(x)$ is decreasing.

You may show your results on a number line, but be sure to explain how you get your answers.

