\qquad
Fall 2008
$\S 16$-B (Ebersole) and $\S 4.5$ (Stewart)
Please read directions carefully. Raise your hand if you are not sure what a problem is asking. You must explain your work thoroughly and unambiguously to receive full credit on questions or parts of questions designated as Work and Answer.
No calculators or notes are allowed on this quiz.

Multiple Choice. (10 points) Circle the letter of the best answer.

1. Tinkle Winkle Company makes wooden music boxes with glass tops. Wood costs $\$ 4$ per square foot and glass costs $\$ 2.50$ per square foot. The music mechanism requires 10 cubic inches of space inside each music box. Tinkle Winkle Company wishes to figure out the dimensions of a music box which will minimize the cost per box. The objective of the problem is
(a) to minimize the surface area of each music box
(b) to maximize the profit from selling the music boxes
(c) to maximize the volume of each music box
(d) to minimize the cost of producing the music boxes
2. A contractor wishes to build a rectangular enclosure with a partition, as shown. She has 4000 ft . of fencing and wishes to maximize the area enclosed. The formula for the area in terms of the width x is
(a) $A(x)=3 x+2 y$
(b) $A(x)=x\left(2000-\frac{3}{2} x\right)$
(c) $A(x)=x(4000-x)$
(d) $A(x)=x(8000-3 x)$

Work and Answer. (10 points) You must show all relevant work to receive full credit. You may use the back if you need more room.

If $1200 \mathrm{~cm}^{2}$ of sheet metal are available to make a box with a square base and open top, the volume of the box is $V(x)=300 x-\frac{1}{4} x^{3}$ (where x represents the length of the base of the box). Use this formula to find the value of x that will give the largest possible volume of the box.

