\qquad

How might we solve the integral $\int x\left(x^{2}-5\right)^{3} d x$?
We can try guessing and checking, as we did in class. Or, we can try a more systematic approach:
In the integrand we have to look for a "chunk" and for the derivative of the chunk. In this case a good chunk to use is $x^{2}-5$, especially since the derivative, $2 x$, is almost in the integrand (all except the 2). Let $u=x^{2}-5$. Then $\frac{d u}{d x}=2 x$. Now "multiply both sides by $d x$ " to get $d u=2 x d x$. You can either solve this equation for $x d x=\frac{1}{2} d u$ and substitute it directly into the integral, or you can "futz" the 2 in the integral first, whichever you prefer. The latter process looks like

$$
\int x\left(x^{2}-5\right)^{3} d x=\frac{1}{2} \int 2 x\left(x^{2}-5\right)^{3} d x=\frac{1}{2} u^{3} d u
$$

(you should get the same thing if you use the "solve for what you want" method). This is a much easier integral to do! We have

$$
\frac{1}{2} u^{3} d u=\frac{1}{2} \cdot \frac{1}{4} u^{4}+C=\frac{1}{8} u^{4}+C .
$$

Now just "back-substitute" to get the answer in terms of x :

$$
\frac{1}{8} u^{4}+C=\frac{1}{8}\left(x^{2}-5\right)^{4}+C
$$

Now try these: evaluate each integral by making a u-substitution. Check by differentiating.

$$
\text { 1. } \int x^{2}\left(5 x^{3}+8\right)^{7} d x \quad \begin{aligned}
u & = \\
d u & =\square
\end{aligned}
$$

2. $\int \frac{\ln x}{x} d x$

$$
\begin{aligned}
& u= \\
& d u=\square
\end{aligned}
$$

3. $\int x \sec \left(x^{2}\right) \tan \left(x^{2}\right) d x$

$$
\begin{aligned}
& u= \\
& d u= \\
& d x
\end{aligned}
$$

4. $\int(\cos x) \sqrt[3]{\sin x} d x$

$$
\begin{aligned}
& u= \\
& d u=\square
\end{aligned}
$$

5. $\int(\sin x) e^{\cos x+1} d x$

$$
\begin{aligned}
& u= \\
& d u= \\
& d x
\end{aligned}
$$

