Math 152 Practice for Midterm III

§§4.9-7.3

DISCLAIMER. This collection of practice problems is *not* guaranteed to be identical, in length, format or content, to the actual exam.

If I were you, I would:

- Know all of the definitions mentioned in class and in the sections of the book, and know examples.
- Know all of the theorems mentioned in class and in the sections of the book, and know examples relating to them.
- Go over all of the homework problems, even "redoing" them on WeBWorK in order to practice.
- Go over all quiz problems.
- Especially practice proving things.

You should also know how to do the following:

- 1. Find the rank and nullity of a matrix
- 2. Use the Gram-Schmidt process to find an orthonormal basis for a vector space (I will give you the formula

$$\mathbf{v}_i = \mathbf{u}_i - \frac{\mathbf{v}_1 \cdot \mathbf{u}_i}{\mathbf{v}_1 \cdot \mathbf{v}_1} \mathbf{v}_1 - \frac{\mathbf{v}_2 \cdot \mathbf{u}_i}{\mathbf{v}_2 \cdot \mathbf{v}_2} \mathbf{v}_2 - \ldots - \frac{\mathbf{v}_{i-1} \cdot \mathbf{u}_i}{\mathbf{v}_{i-1} \cdot \mathbf{v}_{i-1}} \mathbf{v}_{i-1};$$

however, it is up to you to know how to use it!)

- 3. Prove or disprove that a given function is a linear transformation
- 4. Find the eigenvalues and associated eigenvectors of a square matrix
- 5. Prove or disprove that a matrix is diagonalizable
- 6. Find the diagonalization matrix of a diagonalizable matrix A (i.e. find a matrix P such that $P^{-1}AP$ is diagonal)
- 7. Use diagonalization to compute a power of a matrix, for example A^{152} .
- 8. For a given linear transformation $L: V \to W$,
 - (a) Compute the kernel of L
 - (b) Compute the image of L
 - (c) Determine whether or not L is one-to-one, onto, invertible, an isomorphism
 - (d) Determine the inverse of an invertible linear transformation
- 9. Know the definition of a *matrix of a transformation*. Know how to compute it.

Here are some sample problems:

- 1. Let $L: P_2 \to P_3$ be defined by $L(p(t)) = t^2 p'(t)$.
 - (a) Prove that L is a linear transformation.
 - (b) Prove or disprove: L is one-to-one. If L is not one-to-one, find
 - i. $\ker(L)$
 - ii. A basis for $\ker(L)$
 - iii. The dimension of $\ker(L)$.
 - (c) Prove or disprove: L is onto. If L is not onto, find
 - i. $\operatorname{im}(L)$
 - ii. A basis for im(L)
 - iii. The dimension of im(L).
- 2. **Prove or Disprove.** If the statement is true, prove it. Use definitions and theorems. If the statement is false, give a counterexample.
 - (a) If the rank of an $n \times n$ matrix A is n, then A is invertible.
 - (b) Let $S = {\mathbf{u}_1, \mathbf{u}_1, \dots, \mathbf{u}_k}$ be a set of vectors in \mathbb{R}^n . If \mathbf{u} is orthogonal to every vector in S, then \mathbf{u} is orthogonal to every vector in span(S).
 - (c) Let $L: V \to W$ be a linear transformation, and let T be a subspace of W. Then the set

$$S = \{ \mathbf{v} \in V \mid L(\mathbf{v}) \in T \}$$

is a subspace of V.

- (d) A linear transformation $L \colon \mathbb{R}^n \to \mathbb{R}^n$ is invertible if and only if the matrix of L is invertible.
- (e) If λ is an eigenvalue of a matrix A with eigenvector \mathbf{x} , then λ^k is an eigenvalue of A^k with eigenvector \mathbf{x} .
- (f) If λ is an eigenvalue of an invertible matrix A with eigenvector \mathbf{x} , then $-\lambda$ is an eigenvalue of A^{-1} with eigenvector $-\mathbf{x}$.
- (g) If a matrix $A_{n \times n}$ has row k equal to the kth row of I_n for some k, then 1 is an eigenvalue of A.
- (h) If A is an $n \times n$ matrix and the homogeneous system $A\mathbf{x} = \mathbf{0}$ has a nontrivial solution $\mathbf{x} = \mathbf{u}$, then \mathbf{u} is an eigenvector of A.
- (i) If A and B are invertible $n \times n$ matrices, then AB^{-1} and BA^{-1} have the same eigenvalues.

3. Find the matrix of the linear transformation $L \colon \mathbb{R}^2 \to \mathbb{R}^3$ defined by $L\left(\begin{bmatrix} -1\\3 \end{bmatrix}\right) = \begin{bmatrix} 3\\-7\\-2 \end{bmatrix}$ and $L\left(\begin{bmatrix} 4\\2 \end{bmatrix}\right) = \begin{bmatrix} -6\\1\\1 \end{bmatrix}$.

- 4. Let V and W be vector spaces with dim V = 3 and dim W = 4, and let $L: V \to W$ be a linear transformation. Which of the following scenarios are possible? For each part, if it is possible, give an example. If it is not possible, explain why not.
 - (a) L is one-to-one.
 - (b) L is onto.
 - (c) L is one-to-one, but not onto.
 - (d) L is onto, but not one-to-one.
 - (e) L is both one-to-one and onto.
- 5. Repeat #4 for dim V = 4 and dim W = 3.
- 6. Repeat #4 for dim V = 4 and dim W = 4.