Math 152 Practice for Midterm III

§§4.9-7.3
DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length, format or content, to the actual exam.

If I were you, I would:

- Know all of the definitions mentioned in class and in the sections of the book, and know examples.
- Know all of the theorems mentioned in class and in the sections of the book, and know examples relating to them.
- Go over all of the homework problems, even "redoing" them on WeBWorK in order to practice.
- Go over all quiz problems.
- Especially practice proving things.

You should also know how to do the following:

1. Find the rank and nullity of a matrix
2. Use the Gram-Schmidt process to find an orthonormal basis for a vector space (I will give you the formula

$$
\mathbf{v}_{i}=\mathbf{u}_{i}-\frac{\mathbf{v}_{1} \cdot \mathbf{u}_{i}}{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} \mathbf{v}_{1}-\frac{\mathbf{v}_{2} \cdot \mathbf{u}_{i}}{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} \mathbf{v}_{2}-\ldots-\frac{\mathbf{v}_{i-1} \cdot \mathbf{u}_{i}}{\mathbf{v}_{i-1} \cdot \mathbf{v}_{i-1}} \mathbf{v}_{i-1}
$$

however, it is up to you to know how to use it!)
3. Prove or disprove that a given function is a linear transformation
4. Find the eigenvalues and associated eigenvectors of a square matrix
5. Prove or disprove that a matrix is diagonalizable
6. Find the diagonalization matrix of a diagonalizable matrix A (i.e. find a matrix P such that $P^{-1} A P$ is diagonal)
7. Use diagonalization to compute a power of a matrix, for example A^{152}.
8. For a given linear transformation $L: V \rightarrow W$,
(a) Compute the kernel of L
(b) Compute the image of L
(c) Determine whether or not L is one-to-one, onto, invertible, an isomorphism
(d) Determine the inverse of an invertible linear transformation
9. Know the definition of a matrix of a transformation. Know how to compute it.

Here are some sample problems:

1. Let $L: P_{2} \rightarrow P_{3}$ be defined by $L(p(t))=t^{2} p^{\prime}(t)$.
(a) Prove that L is a linear transformation.
(b) Prove or disprove: L is one-to-one. If L is not one-to-one, find
i. $\operatorname{ker}(L)$
ii. A basis for $\operatorname{ker}(L)$
iii. The dimension of $\operatorname{ker}(L)$.
(c) Prove or disprove: L is onto. If L is not onto, find
i. $\operatorname{im}(L)$
ii. A basis for $\operatorname{im}(L)$
iii. The dimension of $\operatorname{im}(L)$.
2. Prove or Disprove. If the statement is true, prove it. Use definitions and theorems. If the statement is false, give a counterexample.
(a) If the rank of an $n \times n$ matrix A is n, then A is invertible.
(b) Let $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{1}, \ldots, \mathbf{u}_{k}\right\}$ be a set of vectors in \mathbb{R}^{n}. If \mathbf{u} is orthogonal to every vector in S, then \mathbf{u} is orthogonal to every vector in $\operatorname{span}(S)$.
(c) Let $L: V \rightarrow W$ be a linear transformation, and let T be a subspace of W. Then the set

$$
S=\{\mathbf{v} \in V \mid L(\mathbf{v}) \in T\}
$$

is a subspace of V.
(d) A linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is invertible if and only if the matrix of L is invertible.
(e) If λ is an eigenvalue of a matrix A with eigenvector \mathbf{x}, then λ^{k} is an eigenvalue of A^{k} with eigenvector \mathbf{x}.
(f) If λ is an eigenvalue of an invertible matrix A with eigenvector \mathbf{x}, then $-\lambda$ is an eigenvalue of A^{-1} with eigenvector $-\mathbf{x}$.
(g) If a matrix $A_{n \times n}$ has row k equal to the k th row of I_{n} for some k, then 1 is an eigenvalue of A.
(h) If A is an $n \times n$ matrix and the homogeneous system $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution $\mathbf{x}=\mathbf{u}$, then \mathbf{u} is an eigenvector of A.
(i) If A and B are invertible $n \times n$ matrices, then $A B^{-1}$ and $B A^{-1}$ have the same eigenvalues.
3. Find the matrix of the linear transformation $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ defined by $L\left(\left[\begin{array}{c}-1 \\ 3\end{array}\right]\right)=\left[\begin{array}{c}3 \\ -7 \\ -2\end{array}\right]$ and $L\left(\left[\begin{array}{l}4 \\ 2\end{array}\right]\right)=\left[\begin{array}{c}-6 \\ 1 \\ 1\end{array}\right]$.
4. Let V and W be vector spaces with $\operatorname{dim} V=3$ and $\operatorname{dim} W=4$, and let $L: V \rightarrow W$ be a linear transformation. Which of the following scenarios are possible? For each part, if it is possible, give an example. If it is not possible, explain why not.
(a) L is one-to-one.
(b) L is onto.
(c) L is one-to-one, but not onto.
(d) L is onto, but not one-to-one.
(e) L is both one-to-one and onto.
5. Repeat $\# 4$ for $\operatorname{dim} V=4$ and $\operatorname{dim} W=3$.
6. Repeat $\# 4$ for $\operatorname{dim} V=4$ and $\operatorname{dim} W=4$.

