Matrix Multiplication Worksheet

Recall that the dot product of two n-vectors

$$
\mathbf{a}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

is $\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}=\sum_{i=1}^{n} a_{i} b_{i}$.
To multiply two matrices A and B, we take each row of A and dot it with each column of B. Specifically, the (i, j)-entry of $A B$ will be the i th row of A dotted with the j th column of B. For example, let

$$
A=\left[\begin{array}{ccc}
6 & -1 & 4 \\
0 & 1 & 3
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{c}
5 \\
2 \\
-9
\end{array}\right]
$$

Then the (1,1)-entry of $A B$ is $6 \cdot 5+-1 \cdot 2+4 \cdot-9=-8$. We have

$$
A B=\left[\begin{array}{c}
-8 \\
-25
\end{array}\right]
$$

(check to make sure you believe this).
Now try the following to check your understanding:

1. Given

$$
C=\left[\begin{array}{cccc}
3 & 1 & 2 & 8 \\
4 & 0 & -5 & 1 \\
2 & 5 & 8 & -1
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{cc}
-5 & 1 \\
1 & 0 \\
0 & 2 \\
3 & 1
\end{array}\right]
$$

find $C D$.

$$
C D=\left[\begin{array}{cc}
10 & 15 \\
-17 & -5 \\
-8 & 17
\end{array}\right]
$$

2. Suppose A is a 10×4 matrix and B is a 4×7 matrix. What will be the size of $A B$? Why?
$A B$ will be 10×7. The $i j$-entry of $A B$ is the i th row of A times the j th column of B. Since A has 10 rows and B has 7 columns, $A B$ will have 10 rows and 7 columns.
3. What must be true of the sizes of A and B in order to multiply them? (You might want to try some different-sized examples to explore this question.) Write your answer with as clear a justification as you can.

The number of columns of A must equal the number of rows of B. As stated in $\# 2$, each entry of $A B$, if it exists, is obtained by multiplying a row of A times a column of B. Suppose $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{p \times q}$. Then the i th row of A looks like

$$
\left[\begin{array}{lll}
a_{i 1} & \cdots & a_{i n}
\end{array}\right]
$$

and the j th column of B looks like

$$
\left[\begin{array}{c}
b_{1 j} \\
\vdots \\
b_{p j}
\end{array}\right]
$$

In order to multiply these vectors, we must have $n=p$.
4. Is $A B$ always the same as $B A$? If so, how would you prove it? If not, give an example of matrices A and B such that $A B \neq B A$.

No, they are not the same. For one thing, the sizes may not be right. For instance, if A is a 2×5 matrix and B is a 5×4 matrix, then $A B$ is a well-defined 2×4 matrix, but $B A$ is not defined since the number of columns of B is not equal to the number of rows of A.

But even if the sizes match, there are many pairs of matrices that do not commute. For example, let

$$
A=\left[\begin{array}{cc}
2 & 0 \\
-1 & 4
\end{array}\right]
$$

and

$$
B=\left[\begin{array}{cc}
1 & 1 \\
3 & -5
\end{array}\right]
$$

Then

$$
A B=\left[\begin{array}{cc}
2 & 2 \\
11 & -21
\end{array}\right]
$$

but

$$
B A=\left[\begin{array}{cc}
1 & 4 \\
11 & -20
\end{array}\right]
$$

thus we see that $A B \neq B A$.

