Recall that the dot product of two n-vectors

$$
\mathbf{a}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right] \quad \text { and } \quad \mathbf{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right]
$$

is $\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+\ldots+a_{n} b_{n}=\sum_{i=1}^{n} a_{i} b_{i}$.
To multiply two matrices A and B, we take each row of A and dot it with each column of B. Specifically, the (i, j)-entry of $A B$ will be the i th row of A dotted with the j th column of B. For example, let

$$
A=\left[\begin{array}{ccc}
6 & -1 & 4 \\
0 & 1 & 3
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{c}
5 \\
2 \\
-9
\end{array}\right]
$$

Then the (1,1)-entry of $A B$ is $6 \cdot 5+-1 \cdot 2+4 \cdot-9=-8$. We have

$$
A B=\left[\begin{array}{c}
-8 \\
-25
\end{array}\right]
$$

(check to make sure you believe this).
Now try the following to check your understanding:

1. Given

$$
C=\left[\begin{array}{cccc}
3 & 1 & 2 & 8 \\
4 & 0 & -5 & 1 \\
2 & 5 & 8 & -1
\end{array}\right] \quad \text { and } \quad D=\left[\begin{array}{cc}
-5 & 1 \\
1 & 0 \\
0 & 2 \\
3 & 1
\end{array}\right]
$$

find $C D$.
2. Suppose A is a 10×4 matrix and B is a 4×7 matrix. What will be the size of $A B$? Why?
3. What must be true of the sizes of A and B in order to multiply them? (You might want to try some different-sized examples to explore this question.) Write your answer with as clear a justification as you can.
4. Is $A B$ always the same as $B A$? If so, how would you prove it? If not, give an example of matrices A and B such that $A B \neq B A$.

