
Math 76 Practice Problems for Midterm I - Solutions
§§6.1-6.3

DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length
or content, to the actual exam. You may expect to see problems on the test that are not exactly like
problems you have seen before.

Multiple Choice. Circle the letter of the best answer.

1.
∫ 1

0
xex dx =

(a) 1

(b) e

(c) e− 1

(d) 0

Using integration by parts, we have

u = x v = ex

↓ ↑
du = dx dv = ex dx

which gives ∫ 1

0
xex dx = xex

∣∣∣∣1
0

−
∫ 1

0
ex dx

= xex − ex
∣∣∣∣1
0

= 1e1 − e1 − (0e0 − e0)

= e− e− 0 + 1 = 1

2.
∫ π/4

−π/4
tan2 x dx =

(a) 1 +
π

2

(b) 1− π

4

(c) 2− π

2

(d) 2 +
π

4

Using the Pythagorean identity tan2 x = sec2 x− 1, we have∫ π/4

−π/4
tan2 x dx =

∫ π/4

−π/4
(sec2 x− 1) dx

= tanx− x
∣∣∣∣π/4
−π/4

=
(
tan

(
π
4

)
− π

4

)
−
(
tan

(
−π

4

)
+ π

4

)
= 1− π

4 − (−1)− π
4 = 2− π

2
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3. The partial fraction decomposition of
4x3 − 2x+ 1

(x2 + 5)(x− 3)2
is

(a)
A

x2 + 5
+

B

x− 3
+

C

(x− 3)2

(b)
Ax+B

x2 + 5
+

C

x− 3
+

D

(x− 3)2

(c)
Ax+B

x2 + 5
+

C

(x− 3)2

(d)
Ax+B

x2 + 5
+

C

x− 3
+
Dx+ E

(x− 3)2

In the denominator we have one irreducible quadratic factor x2 + 5, so we put a linear form in
the numerator of that term. We also have a repeated linear factor (x− 3)2, so we put a constant
form in the numerator of each power of x− 3 up to the maximum (x− 3)2.

4.
∫

2x− 1
(x+ 1)(x− 2)

dx =

(a) ln |x+ 1|+ ln |x− 2|+ C

(b) 3 ln |x+ 1| − 2 ln |x− 2|+ C

(c) ln |x+ 1| − ln |x− 2|+ C

(d) − ln |x+ 1|+ ln |x− 2|+ C

If
2x− 1

(x+ 1)(x− 2)
=

A

x+ 1
+

B

x− 2
, then A(x− 2) +B(x+ 1) = 2x− 1. Setting x = 2 we see that

3B = 3, so B = 1. Setting x = −1, we get −3A = −3, so A = 1. Therefore∫
2x− 1

(x+ 1)(x− 2)
dx =

∫
1

x+ 1
+

1
x− 2

dx

= ln |x+ 1|+ ln |x− 2|+ C.

5.
∫

7
x2 + 6x+ 10

dx =

(a) tan−1
(
x+ 3

7

)
+ C

(b) 7 tan−1(6x+ 10) + C

(c)
7
3

tan−1 x+ C

(d) 7 tan−1(x+ 3) + C

By completing the square under the radical, we see that x2 + 6x+ 10 = x2 + 6x+ 9 + 10− 9 =
(x+ 3)2 + 1, so we get ∫

7
x2 + 6x+ 10

dx = 7
∫

1
(x+ 3)2 + 1

dx

Let u = x+ 3. Then du = dx, and we have

= 7
∫

1
u2 + 1

du

= 7 tan−1(u) + C

= 7 tan−1(x+ 3) + C.
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Fill-In.

1.
∫

sec3 x dx =
1
2

secx tanx+
1
2

ln | secx+ tanx|+ C .

We did this problem in class. To recap: use parts and solve for the integral. Please see me if you
would like to go over this important technique.

2.
∫

sin3 x dx = − cosx+ 1
3 cos3 x+ C .

We have∫
sin3 x dx =

∫
sin2 x sinx dx

=
∫

(1− cos2 x) sinx dx (Let u = cosx. Then du = − sinx dx)

= −
∫

(1− u2) du

= −
(
u− 1

3u
3
)

+ C

= − cosx+ 1
3 cos3 x+ C.

3. To evaluate the integral
∫ √

5 + x2 dx, it is best to use the trigonometric substitution

x =
√

5 tan θ
(function of θ)

.

For the form
√
a2 + x2 it is best to use the trigonometric substitution x = a tan θ, where it is

understood that −π
2 < θ < π

2 . To see why, notice that the integral above becomes∫ √
5 + 5 tan2 θ

√
5 sec2 θ dθ = 5

∫ √
1 + tan2 θ sec2 θ dθ

(Notice the 1 + tan2 θ, which equals sec2 θ, under the square root; that is precisely the reason for
the substitution we made)

= 5
∫

sec θ sec2 θ dθ =
√

5
∫

sec3 θ dθ,

which now reduces to the integral in Fill-In #1.

4. If
x2 − 3

(x2 + 1)(x− 2)
=
Ax+B

x2 + 1
+

C

x− 2
, then

(a) A =
4
5

(b) B =
8
5

(c) C =
1
5
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We have (Ax + B)(x − 2) + C(x2 + 1) = x2 − 3. Setting x = 2 we get 5C = 1, so C =
1
5

. Now

A+ C = 1, so A =
4
5

. Finally −2A+B = 0, so B =
8
5

.

Work and Answer. You must show all relevant work to receive full credit.

1. Evaluate the integral
∫
x sin 3x dx.

Using integration by parts, we have

u = x v = −1
3

cos 3x

↓ ↑
du = dx dv = sin 3x dx

which gives ∫
x sin 3x dx = −1

3
x cos 3x+

1
3

∫
cos 3x dx

= −1
3
x cos 3x+

1
9

sin 3x+ C

2. Evaluate the integral
∫
x sin−1(x2) dx.

This is similar to a problem we did in homework, but first we must make the u-substitution
(actually we will use t instead of u because we will soon be using integration by parts, and we

don’t want to confuse the u’s): let t = x2; then dt = 2x dx, and we get
1
2

∫
sin−1(t) dt. Now

using integration by parts, we have

u = sin−1(t) v = t

↓ ↑

du =
1√

1− t2
dt dv = dt

which gives

1
2

∫
sin−1(t) dt =

1
2

(
t sin−1(t)−

∫
t√

1− t2

)
dt

(Now we use one final substitution for the remaining integral: u = 1− t2. Then du = −2t dt.)

=
1
2

(
t sin−1(t) +

1
2

∫
1√
u
du

)
=

1
2

(
t sin−1(t) +

1
2
· 2u1/2

)
+ C

=
1
2

(
t sin−1(t) +

√
1− t2

)
+ C. Finally we go back to x’s:

=
1
2
x2 sin−1(x2) +

1
2

√
1− x4 + C
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3. Evaluate the integral
∫
ex sinx dx.

Using integration by parts, we have

u = ex v = − cosx
↓ ↑

du = ex dx dv = sinx dx

which gives ∫
ex sinx dx = −ex cosx+

∫
ex cosx dx.

This is similar to a problem that we did in class. Remember that we had to do parts twice and
solve for the integral. So here’s the second application of integration by parts:

u = ex v = sinx
↓ ↑

du = ex dx dv = cosx dx

We get −ex cosx+
(
ex sinx−

∫
ex sinx

)
. Now we are ready to solve for the integral; we have

∫
ex sinx dx = −ex cosx+ ex sinx−

∫
ex sinx,

so
2
∫
ex sinx dx = −ex cosx+ ex sinx+ C.

Therefore ∫
ex sinx dx = −1

2
ex cosx+

1
2
ex sinx+ C

4. Evaluate the integral
∫
x2 ln(x3) dx.

Again, this is similar to problems we have done before. First we substitute u = x3. Then

du = 3x2 dx, and we have
1
3

∫
lnu du. We showed in class that

∫
ln t du = t ln t − t + C (you

can rederive it by letting u = ln t and dv = dt and using parts); therefore we get

1
3

∫
lnu du =

1
3

(u lnu− u) + C

=
1
3

(x3 ln(x3)− x3) + C

If you are feeling clever, convince yourself that the above simplifies to x3
(
lnx− 1

3

)
+ C !
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5. Evaluate the integral
∫

cos2 x sin4 x dx.

Since the powers of sinx and cosx are both even, we must use the half-angle and double-angle
identities; we have∫

cos2 x sin4 x dx =
∫

(cosx sinx)2 sin2 x dx

=
∫ (

1
2

sin 2x
)2(1

2
(1− cos 2x)

)
dx

=
1
8

∫
sin2 2x− sin2 2x cos 2x dx

=
1
8

[∫ (
1
2

(1− cos 4x)
)
dx−

∫
sin2 2x cos 2x dx

]
(For the second integral, let u = sin 2x and proceed. I’ll skip to the end of that. See me for
details if you’re not sure how I get there.)

=
1
16

(
x− 1

4
sin 4x

)
− 1

48
sin3 2x+ C

6. Evaluate the integral
∫

tan2 x sec4 x dx.

This one is actually much nicer than Work and Answer #5; since the power of secx is even we
can use the Pythagorean identity. We have∫

tan2 x sec4 x dx =
∫

tan2 x sec2 x sec2 x dx

=
∫

tan2 x(tan2 x+ 1) sec2 x dx (Let u = tanx)

=
∫
u2(u2 + 1) du

=
∫
u4 + u2 du

=
1
5

tan5 x+
1
3

tan3 x+ C

7. Evaluate the integral
∫

tan3 x sec3 x dx.

This one is also nice because the power of tanx is odd. We have∫
tan3 x sec3 x dx =

∫
tan2 x sec2 x · secx tanx dx

=
∫

(sec2 x− 1) sec2 x · secx tanx dx (Let u = secx)

=
∫

(u2 − 1)u2 du

=
∫
u4 − u2 du

=
1
5

sec5 x− 1
3

sec3 x+ C
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8. Evaluate the integral
∫

tan2 x secx dx.

This one could get ugly because the power of secx is odd and the power of tanx is even. We
have ∫

tan2 x secx dx =
∫

(sec2 x− 1) secx dx

=
∫

sec3 x− secx dx. Using Fill-In #1:

=
(

1
2

secx tanx+
1
2

ln | secx+ tanx|
)
− ln | secx+ tanx|+ C

=
1
2

(secx tanx− ln | secx+ tanx|) + C

9. Evaluate the integral
∫

cos 2x sin 3x dx.

We have, using one of the product identities,∫
cos 2x sin 3x dx =

1
2

∫
sinx+ sin 5x dx

=
1
2

(
− cosx− 1

5
cos 5x

)
+ C

= −1
2

(
cosx+

1
5

cos 5x
)

+ C

10. Evaluate the integral
∫ √

4− 9x2 dx.

Here we must first see that
∫ √

4− 9x2 dx =
∫ √

4− (3x)2 dx =
1
3

∫ √
4− u2 du (where

u = 3x), and then use the trigonometric substitution u = 2 sin θ, −π
2 ≤ θ ≤

π
2 .

[Alternatively, if you feel confident you can substitute directly from the x’s with x = 2
3 sin θ; then

dx = 2
3 cos θ dθ, and you’ll get the same thing.]

In either case we end up with

1
3

∫ √
4− 4 sin2 θ · 2 cos θ dθ =

4
3

∫ √
1− sin2 θ cos θ dθ

=
4
3

∫ √
cos2 θ cos θ dθ

=
4
3

∫
cos θ cos θ dθ (since −π

2
≤ θ ≤ π

2
)

=
4
3

∫
cos2 θ dθ

=
4
3
· 1

2

∫
1 + cos 2θ dθ

=
2
3

(
θ +

1
2

sin 2θ
)

+ C
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=
2
3

(θ + sin θ cos θ) + C

Now use −π
2 ≤ θ ≤

π
2 to get θ = sin−1

(u
2

)
= sin−1

(
3x
2

)
and trigonometry similar to what was

done in class to get cos θ =
√

4− u2

2
=
√

4− 9x2

2
. We have

=
2
3

(
sin−1

(
3x
2

)
+

3x
2
·
√

4− 9x2

2

)
+ C

=
2
3

(
sin−1

(
3x
2

)
+

3x
√

4− 9x2

4

)
+ C

11. Evaluate the integral
∫ √

4 + 9x2 dx.

Similar to above we use the substitution x = 2
3 tan θ; then dx = 2

3 sec2 θ dθ with −π
2 < θ < π

2 ,
and we get
2
3

∫ √
4 + 4 sin2 θ · sec2 θ dθ =

4
3

∫ √
1 + tan2 θ sec2 θ dθ

=
4
3

∫ √
sec2 θ sec2 θ dθ

=
4
3

∫
sec3 θ dθ (since −π

2
≤ θ ≤ π

2
)

=
4
3

(
1
2

sec θ tan θ +
1
2

ln | sec θ + tan θ|
)

+ C (Using Fill-In #1 again)

Again using trigonometry we get tan θ =
3x
2

and sec θ =
√

4 + 9x2

2
. We have

=
2
3

(√
4 + 9x2

2
· 3x

2
+ ln

∣∣∣∣∣
√

4 + 9x2

2
+

3x
2

∣∣∣∣∣
)

+ C

=
2
3

(
3x
√

4 + 9x2

4
+ ln

∣∣∣∣∣3x+
√

4 + 9x2

2

∣∣∣∣∣
)

+ C

12. Evaluate the integral
∫ √

9x2 − 4 dx.

Once more, with feeling! This time it’s x = 2
3 sec θ with 0 ≤ θ <

π

2
; then dx = 2

3 sec θ tan θ dθ,
and we get

2
3

∫ √
4 sec2 θ − 4 · sec θ tan θ dθ =

4
3

∫ √
sec2 θ − 1 sec θ tan θ dθ

=
4
3

∫ √
tan2 θ sec θ tan θ dθ

=
4
3

∫
tan2 θ sec θ dθ (since 0 ≤ θ < π

2
)

=
4
3
· 1

2
(sec θ tan θ − ln | sec θ + tan θ|) + C
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(using Work and Answer #8). Again using trigonometry we get sec θ =
3x
2

and tan θ =
√

9x2 − 4
2

.
We have

=
2
3

(
3x
2
·
√

9x2 − 4
2

− ln

∣∣∣∣∣3x2 +
√

9x2 − 4
2

∣∣∣∣∣
)

+ C

=
2
3

(
3x
√

9x2 − 4
4

− ln

∣∣∣∣∣3x+
√

9x2 − 4
2

∣∣∣∣∣
)

+ C

13. Evaluate the integral
∫

2x2 − 5x+ 10
(x− 1)3

dx.

The integrand is a proper rational function with repeated linear factors. Hence we may split up
the fraction as

2x2 − 5x+ 10
(x− 1)3

=
A

x− 1
+

B

(x− 1)2
+

C

(x− 1)3
.

Then by getting a common denominator for the right side of the above equation and setting the
resulting numerator equal to 2x2 − 5x+ 10, we get

A(x− 1)2 +B(x− 1) + C = 2x2 − 5x+ 10

Ax2 + (−2A+B)x+ (A−B + C) = 2x2 − 5x+ 10 (1)

Note. By setting x = 1 we can see that C = 2 − 5 + 10 = 7. However, it is difficult to use the
“cover-up” method beyond this point since there is no other “easy” x-value to plug in to make
terms drop out. Therefore we will proceed with the method of undetermined coefficients.

From (1) we have A = 2, −2A+B = −5 (so B = −1), and A−B+C = 10 (so 2− (−1)+C = 10,
and C = 7, as expected from the Note above). Therefore∫

2x2 − 5x+ 10
(x− 1)3

dx =
∫ (

2
x− 1

− 1
(x− 1)2

+
7

(x− 1)3

)
dx

Now use the substitution u = x− 1 in each fraction to get

= 2 ln |x− 1|+ 1
x− 1

− 7
2(x− 1)2

+ C

14. Evaluate the integral
∫

x2 − 9x− 7
(x+ 2)(x2 + 1)

dx.

The integrand is a proper rational function with a linear factor and an irreducible quadratic
factor, no repeats. Hence we may split up the fraction as

x2 − 9x− 7
(x+ 2)(x2 + 1)

=
A

x+ 2
+
Bx+ C

x2 + 1
.

Then by getting a common denominator for the right side of the above equation and setting the
resulting numerator equal to x2 − 9x− 7, we get

A(x2 + 1) + (Bx+ C)(x+ 2) = x2 − 9x− 7

(A+B)x2 + (2B + C)x+ (A+ 2C) = x2 − 9x− 7 (2)
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Note. By setting x = −2 we can see that 5A = 4 + 18 − 7 = 15, so A = 3. However, it is
difficult to use the “cover-up” method beyond this point since there is no other “easy” x-value
to plug in to make terms drop out. Therefore we will proceed with the method of undetermined
coefficients.

From (2) we have A+B = 1 (so B = −2 by the Note above), and 2B+C = −9 (so −4+C = −9,
and C = −5). We can also double-check that A+ 2C = −7: sure enough, A = 3 and C = −5, so
A+ 2C = 3 + 2(−5) = −7. Therefore∫

x2 − 9x− 7
(x+ 2)(x2 + 1)

dx =
∫ (

3
x+ 2

− 2x+ 5
x2 + 1

)
dx

=
∫

3
x+ 2

dx−
(∫

2x
x2 + 1

dx+
∫

5
x2 + 1

dx

)
For the first integral, let u = x + 2. For the second integral, let u = x2 + 1. For the third, refer
to Multiple Choice #5:

= 3 ln |x+ 2| − ln(x2 + 1)− 5 tan−1 x+ C
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