
Math 76 Practice Problems for Midterm III - Solutions
§§8.2-9.2

DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in
length or content, to the actual exam. You may expect to see problems on the test that are not
exactly like problems you have seen before.

Multiple Choice. Circle the letter of the best answer.

1.
∞∑
n=1

3
(

1
2

)n
=

(a) 6

(b) 3

(c)
3

2

(d) ∞ (diverges)

This is a geometric series with r =
1

2
, so it converges. But take care! The sum is

∞∑
n=1

3
(

1
2

)n
=

3

1− 1
2

− 3 = 6− 3 = 3 since the sum starts from n = 1, not n = 0.

2. The series
∞∑
n=1

2

3n+2

(a) converges to
8

9

(b) converges to
1

9

(c) converges to 3

(d) converges to 9

This is a geometric series. There are several ways to get it into a form that fits the formula.
Here are two:

Solution 1.

We have
∞∑
n=1

2

3n+2
=
∞∑
n=3

2

3n
.

This is exactly in the form we want it, but there are three terms “missing.” (The

formula
a

1− r
works when the series starts from n = 0, but this one starts at n = 3.)

So we take
a

1− r
and subtract off the terms corresponding to n = 0, n = 1, and

n = 2. We get
2

1− 1
3

− 2− 2

3
− 2

9
= 3− 2− 2

3
− 2

9
=

1

9
.

Solution 2.

We have
∞∑
n=1

2

3n+2
=
∞∑
n=0

2

3n+3
=
∞∑
n=0

2

33

(
1

3

)n
=

2
27

1− 1
3

=
1

9
.
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3.
∞∑
n=3

(
2

n
− 2

n+ 1

)
=

(a) 0

(b)
1

6

(c)
2

3

(d) ∞ (diverges)

This is a telescoping series. The n-th partial sum is

sn =

(
2

3
− 2

4

)
+

(
2

4
− 2

5

)
+

(
2

5
− 2

6

)
+ . . .+

(
2

n
− 2

n+ 1

)
=

2

3
− 2

n+ 1
,

whose limit as n→∞ is
2

3
.

4. To determine whether or not the series
∞∑
n=2

5n3

1− 2n+ n4
converges, the limit comparison

test may be used with comparison series
∑

bn =

(a)
∑ 1

n

(b)
∑

5n3

(c)
∑ 5

n4

(d) none; the limit comparison test cannot be used

The degree of the denominator of an =
5n3

1− 2n+ n4
is one more than the degree of the

numerator. So the best comparison term is bn =
1

n
. To check, note that the limit of an

bn
is

finite and positive, since

lim
n→∞

5n3

1−2n+n4

1
n

= lim
n→∞

5n3

1− 2n+ n4
· n

1

= lim
n→∞

5n4

1− 2n+ n4
= 5.

5. The series
∞∑
n=1

(−1)n−1

√
n

n2 − 4
√
n− 1

(a) converges absolutely (AC)

(b) converges conditionally (CC)

(c) diverges

Since the biggest power on the bottom is n2 and the biggest power on the top is n1/2, the
difference in the powers is greater than 1 (2− 1

2
= 3

2
). Thus the series converges absolutely

(AC) by the limit comparison test, using bn =
1

n3/2
.
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Here is a more detailed solution:

Try for AC: look at the series
∞∑
n=1

√
n

n2 − 4
√
n− 1

. The terms an of this series are positive,

at least from some point on. So we may use the limit comparison test. Let bn =
1

n3/2
. We

have

lim
n→∞

an
bn

= lim
n→∞

n1/2

n2 − 4n1/2 − 1
· n

3/2

1

= lim
n→∞

n2

n2 − 4n1/2 − 1
= 1,

a finite positive limit. Therefore we are using the right bn for the limit comparison test.

Since
∑

bn converges (it is a p-series with p = 3
2
), our series also converges. In other

words, the original series
∞∑
n=1

(−1)n−1

√
n

n2 − 4
√
n− 1

converges absolutely (AC).

6. The series
∞∑
n=1

(−1)n−1

√
n

n− 4
√
n− 1

(a) converges absolutely (AC)

(b) converges conditionally (CC)

(c) diverges

Here the difference in the powers is less than 1 (1− 1
2

= 1
2
). Thus the series will not

converge absolutely. However, it will still converge (conditionally), by the alternating
series test: we have

• Let f(x) =

√
x

x− 4
√
x− 1

. Then

f ′(x) =

1
2
√
x
(x− 4

√
x− 1)−

√
x(1− 2√

x
)

(x− 4
√
x− 1)2

= −
1
2

(√
x+ 1√

x

)
(x− 4

√
x− 1)2

< 0

(I skipped a lot of algebra here; you can check my work). Therefore the terms are
decreasing.

• lim
n→∞

√
n

n− 4
√
n− 1

= 0 since the power on the bottom is bigger than the power on

the top.

7. The series
∞∑
n=0

(−1)n
10n

7n!

(a) converges absolutely (AC)
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(b) converges conditionally (CC)

(c) diverges

Using the ratio test we get

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

10n+1

7(n+ 1)!
· 7n!

10n

= lim
n→∞

10

n+ 1
= 0 < 1.

Therefore the series is AC.

8. The series
∞∑
n=2

(
2n2 + 1

n2 + 5n− 6

)n
(a) converges absolutely (AC)

(b) converges conditionally (CC)

(c) diverges

Note. There was a typo in this question; it originally said
∞∑
n=0

(
2n2 + 1

n2 + 5n− 6

)n
, which

unfortunately is not defined at n = 1. However, the procedure for determining what the
series does eventually is the same:

Using the root test we get

lim
n→∞

n
√
|an| = lim

n→∞
n

√(
2n2 + 1

n2 + 5n− 6

)n
= lim

n→∞

2n2 + 1

n2 + 5n− 6
= 2 > 1.

Therefore the series diverges.

9. The interval of convergence of the power series
∞∑
n=1

1

n
(x− 1)n is

(a) [0, 1]

(b) (0, 1)

(c) (0, 2]

(d) [0, 2)

Since the power series is centered at x = 1, we can see immediately that the answer must
be either (c) or (d) (You can also check this using the ratio test).

Now we check the endpoints: at x = 0 we have
∞∑
n=1

(−1)n
1

n
which converges by the

alternating series test. At x = 2 we have
∞∑
n=1

1

n
which diverges by the p-series test.
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10. A power series representation for the function f(x) =
3

4− x
is

(a)
∞∑
n=0

3

4
xn

(b)
∞∑
n=0

(
3

4

)n+1

xn

(c)
∞∑
n=0

3

4n+1
xn

(d)
∞∑
n=0

3(4− x)n

We have

3

4− x
=

3

4
(
1− 1

4
x
) =

3
4

1− 1
4
x

=
∞∑
n=0

3

4

(
1

4
x

)n
=
∞∑
n=0

3

4n+1
xn.

11. The Maclaurin series for the function f(x) = x3 cos(4x2) is

(a)
∞∑
n=0

(−16)n

(2n)!
x4n+3

(b)
∞∑
n=0

(−1)n

(2n)!
x2n+3

(c)
∞∑
n=0

(−1)n

n!
(4x2)n

(d)
∞∑
n=0

(−1)n

(2n+ 1)!
x4n2+3

Recall that the Maclaurin series for cos(x) is
∞∑
n=0

(−1)n

(2n)!
x2n, for all x. Therefore for cos(4x2)

it is
∞∑
n=0

(−1)n

(2n)!
(4x2)2n. Finally, for x3 cos(4x2) it is

x3

∞∑
n=0

(−1)n

(2n)!
(4x2)2n = x3

∞∑
n=0

(−1)n42nx4n

(2n)!
=
∞∑
n=0

(−16)n

(2n)!
x4n+3.

12. The equation of the line tangent to the curve
x = e

√
t

y = t− ln t2
at the point corresponding

to t = 4 is

(a) y =
2

e2
x+ 4− ln 16

(b) y =
1

2
x+ 4− ln 16− 1

2
e2

(c) y =
e2

4
x+ 4− ln 16− 1

4
e4

(d) y =
2

e2
x+ 2− ln 16

The slope is
dy

dx
=

dy
dt
dx
dt

evaluated at t = 4. Since
dy

dt
= 1− 2

t
=
t− 2

t
and

dx

dt
=

1

2
t−

1
2 e
√
t =

e
√
t

2
√
t
, we have

dy

dx
=

t− 2

t
· 2
√
t

e
√
t

=
2(t− 2)

√
t

te
√
t

, which evaluated at t = 4 is
2

e2
. Now

5



the point on the curve corresponding to t = 4 (the point of tangency) is (e2, 4 − ln 16),

so 4 − ln 16 =
2

e2
e2 + b = 2 + b. Therefore b = 2 − ln 16, and the equation of the line is

y =
2

e2
x+ 2− ln 16.

13. The length of the curve
x = cos2 t
y = cos t

is

(a)

∫ 2π

0

√
sin2 2t+ sin2 t dt

(b)

∫ π

0

√
sin2 2t+ sin2 t dt

(c)

∫ 2π

0

√
1 + 14 sec2 t dt

(d)

∫ π

0

√
1 + 14 sec2 t dt

Since the endpoints are not given it is up to us to find how long the curve is. After
eliminating the parameter we have x = y2, so it looks like a sideways parabola. But y
can only have values between −1 and 1 since it is equal to the cosine of something. When
t = 0, y = 1; and when t = π, y = −1. There are no angles between 0 and π that will
make y = ±1, so the curve is traced once from t = 0 to t = π.

We have x′ = 2 cos t sin t = sin 2t, so (x′)2 = sin2 2t. We also have y′ = − sin t, so

(y′)2 = sin2 t. Therefore the arc length is

∫ π

0

√
sin2 2t+ sin2 t dt.

Fill-In.

1.
∞∑
n=1

5n

n2 + 1
(x+ 3)n−1 is a power series centered at −3 .

A power series of the form
∞∑
n=?

cn(x− a)n is centered at a. Here we have a = −3.

2. The radius of convergence of the power series
∞∑
n=1

(−1)n√
n
xn is 1 .

Using the ratio test, we have

lim
n→∞

∣∣∣∣ xn+1

√
n+ 1

·
√
n

xn

∣∣∣∣ = lim
n→∞

√
n√

n+ 1
|x|

= |x|
set
< 1.

Therefore the radius of convergence is R = 1.

3. Circle the best answer. On the line, indicate one valid test that can be applied to get your
answer. You may choose from the following list:

6



• divergence test

• p-series test

• geometric series test

• integral test

• direct comparison test

• limit comparison test

• alternating series test
• ratio test
• root test

(a)
∞∑
n=1

4

n3
( converges | diverges )

Test: p-series test, integral test, limit comparison test

(b)
∞∑
n=1

(−1)n
n3 − 1

3n2
( converges | diverges ) Test: divergence test

(c)
∞∑
n=1

3
√
n

n2 − 3n+ 1
( converges | diverges )

Test: limit comparison test, integral test

(d)
∞∑
n=1

cos(nπ)

tan−1(n)
( converges | diverges ) Test: divergence test

(e)
∞∑
n=1

10n

(5n)!
( converges | diverges ) Test: ratio test

Graph. More accuracy = more points! Let C be the curve
x = cos t

y = sin t cos t
.

(a) Eliminate the parameter to find a Cartesian equation of C.

y2 = sin2 t cos2 t = (1−cos2 t) cos2 t = (1−x2)x2. So we have y2 = (1− x2)x2 or y = ±x
√

1− x2

(b) Find the point(s) on the curve where the tangent is vertical.

Since the curve is periodic with period 2π, we only need to consider t-values between 0 and
2π.
dy

dx
= y′x′ = − sin2 t+ cos2 t− sin t = −cos 2tsin t.

The tangents will be vertical at those t-values for which
dy

dx
is undefined (the denominator

= 0). So set sin t = 0. The solutions are 0 and π. The points corresponding to these t-values

are (1, 0) and (−1, 0)

(c) Find the point(s) on the curve where the tangent is horizontal.

The tangents will be horizontal at those t-values for which
dy

dx
is 0 (the numerator = 0).

Again, we only need to look for solutions on the interval [0, 2π]. So set cos 2t = 0. The

solutions are t =
π

4
,

3π

4
,

5π

4
, and

7π

4
. The points corresponding to these t-values are

(√
2

2
,
1

2

)
,

(
−
√

2

2
,−1

2

)
,

(
−
√

2

2
,
1

2

)
, and

(√
2

2
,−1

2

)
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(d) Find equation(s) of the tangent(s) to C at the point (0, 0).

Set x = 0 and y = 0:

0 = cos t⇒ t =
π

2
or

3π

2
are the only solutions in the interval [0, 2π]. Both of these t-values

satisfy 0 = sin t cos t, so there are two t-values corresponding to the point (0, 0).

The slopes are as follows:

• t =
π

2
: y′

(π
2

)
= −

cos 2(π
2
)

sin π
2

= 1

• t =
3π

2
: y′

(
3π

2

)
= −

cos 2(3π
2

)

sin 3π
2

= −1

The y-intercept is (0, 0) in both cases, so the equations are y = x and y = −x.

(e) Sketch a graph of C, labeling the features found in parts (b)-(d).

-1 -0.5 0.5 1

-0.4

-0.2

0.2

0.4 t = p
4

t = 3p
4

t = 5p
4

t = 7p
4

t = 0t = p

y =
 x

y = -x

Work and Answer. You must show all relevant work to receive full credit.

1. Find the sum of the series
∞∑

n=−1

2 · 3n

4n−1
.

This is a geometric series after some manipulation. Note that

∞∑
n=−1

2 · 3n

4n−1
=

∞∑
n=−2

2 · 3n+1

4n
=

∞∑
n=−2

6 · 3n

4n
=

∞∑
n=−2

6 ·
(

3

4

)n
=

6

1− 3
4

+ 6 ·
(

3

4

)−1

+ 6 ·
(

3

4

)−2

= 24 + 6

(
4

3

)
+ 6

(
16

9

)
=

128

3
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2. Find the sum of the series
∞∑
n=2

n+ 1

n3 − n
.

This is a telescoping series after some manipulation. Note that

∞∑
n=2

n+ 1

n3 − n
=
∞∑
n=2

n+ 1

n(n+ 1)(n− 1)

=
∞∑
n=2

1

n(n− 1)
=
∞∑
n=2

(
1

n− 1
− 1

n

)
(using partial fractions). Therefore

sn =

(
1− 1

2

)
+

(
1

2
− 1

3

)
+ . . .+

(
1

n− 1
− 1

n

)
= 1− 1

n

which approaches 1 as n→∞. Therefore the sum of the series is 1

3. Determine whether the series
∞∑
n=1

3n sinn

n!
is absolutely convergent (AC), conditionally

convergent (CC), or divergent.

Try for AC: we want to check whether or not
∞∑
n=1

∣∣∣∣3n sinn

n!

∣∣∣∣ converges or not. We have

∣∣∣∣3n sinn

n!

∣∣∣∣ =
3n| sinn|

n!
≤ 3n

n!

since | sinn| ≤ 1 for all n. We are attempting to use the direct comparison test — however,

we need another test to determine whether or not
∑ 3n

n!
converges. You can check using

the ratio test that
∞∑
n=1

3n

n!
does converge. Therefore

∞∑
n=1

∣∣∣∣3n sinn

n!

∣∣∣∣ also converges, and hence

the original series converges absolutely (AC)

4. (a) Find a power series representation for the function f(x) = ln(2 + 3x).

There are two ways to do this problem. One is to use §11.10 and find, say, the Maclau-
rin series for f(x). This is quite difficult, however. Here’s the way I recommend:

Use §11.9 and recognize that f ′(x) =
3

2 + 3x
=

3
2

1−
(
−3

2
x
) , which is the sum

∞∑
n=0

3

2

(
−3

2
x

)n
=
∞∑
n=0

(−1)n · 3n+1

2n+1
xn,

9



and therefore f(x) is equal to an antiderivative of this sum: we get

ln(2 + 3x) =
∞∑
n=0

(−1)n · 3n+1

(n+ 1)2n+1
xn+1 + C =

∞∑
n=1

(−1)n−1 · 3n

n · 2n
xn + C.

Plugging in x = 0 we see that ln(2 + 3(0)) = ln 2 = C. Therefore we have

ln(2 + 3x) = ln 2 +
∞∑
n=1

(−1)n−1 · 3n

n · 2n
xn

(b) Find the interval of convergence.

Using the ratio test, we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ 3n+1xn+1

(n+ 1)2n+1
· n · 2

n

3nxn

∣∣∣∣
= lim

n→∞

3n

2(n+ 1)
|x| = 3

2
|x|

set
< 1

So |x| < 2

3
. It remains to check the endpoints.

When x =
2

3
we have

∞∑
n=1

(−1)n−1 · 3n

n · 2n

(
2

3

)n
(the (ln 2) at the beginning won’t affect

whether the series converges or not), which equals
∞∑
n=1

(−1)n−1

n
. This converges by

the alternating series test.

When x = −2

3
we have

∞∑
n=1

(−1)n−1 · 3n

n · 2n

(
−2

3

)n
=
∞∑
n=1

(−1)n−1(−1)n

n
=
∞∑
n=1

(−1)2n−1

n
=
∞∑
n=1

−1

n
= −

∞∑
n=1

1

n
,

which diverges since it is a p-series with p = 1.

Therefore the interval of convergence is

(
−2

3
,
2

3

]

5. (a) Write the Taylor series for the function f(x) =
√
x centered at 1.
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We have

f(x) =
√
x f(1) = 1

f ′(x) =
1

2
√
x

f ′(1) =
1

2

f ′′(x) =
1

2

(
−1

2

)
x−3/2 f ′′(1) =

1

2

(
−1

2

)
f ′′′(x) =

1

2

(
−1

2

)(
−3

2

)
x−5/2 f ′′′(1) =

1

2

(
−1

2

)(
−3

2

)
f (4)(x) =

1

2

(
−1

2

)(
−3

2

)(
−5

2

)
x−7/2 f (4)(1) =

1

2

(
−1

2

)(
−3

2

)(
−5

2

)
. . .

We can see now the pattern that we get. We have

f (5)(1) =
1

2

(
−1

2

)(
−3

2

)(
−5

2

)(
−7

2

)
=

1 · 3 · 5 · 7
25

f (6)(1) =
1

2

(
−1

2

)(
−3

2

)(
−5

2

)(
−7

2

)(
−9

2

)
= −1 · 3 · 5 · 7 · 9

26

. . . f (n)(1) = (−1)n−1 1 · 3 · 5 · · · (2n− 3)

2n
.

By Taylor’s Theorem the coefficients of the Taylor series for f(x) are cn =
f (n)(1)

n!
. For

n ≥ 2 this follows the pattern as above, and we have cn = (−1)n−1 1 · 3 · 5 · · · (2n− 3)

n! 2n
.

The first two terms (for n = 0 and n = 1) do not follow this pattern, so we just write
them out separately; we get

√
x = 1 +

1

2
(x− 1) +

∞∑
n=2

(−1)n−1 1 · 3 · 5 · · · (2n− 3)

n! 2n
(x− 1)n

(b) Find the radius of convergence.

Using the ratio test we have

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣1 · 3 · 5 · · · (2n− 1) · (x− 1)n+1

(n+ 1)! 2n+1
· n! 2n

1 · 3 · 5 · · · (2n− 3) · (x− 1)n

∣∣∣∣
= lim

n→∞

2n− 1

2(n+ 1)
|x− 1|

= |x− 1|
set
< 1.

Therefore the radius of convergence is R = 1

(c) Estimate
√

1.4 using the first three terms of the Taylor series.

√
1.4 ≈ 1 +

1

2
(0.4)− 1

2! · 4
(0.4)2 = 1 + 0.2− 0.02 = 1.18

(For comparison, a calculator gives
√

1.4 ≈ 1.1832.)
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6. Estimate

∫ 1

0

ex
2

dx using the first two terms of the Maclaurin series expansion.

First we have that the Maclaurin series for ex is
∞∑
n=0

xn

n!
. Since the radius of convergence

is infinite we can substitute in x2 for x to get the Maclaurin series for ex
2

, which is
∞∑
n=0

(x2)n

n!
=
∞∑
n=0

x2n

n!
. Integrating term by term we get

∫ 1

0

ex
2

dx =
∞∑
n=0

x2n+1

n! (2n+ 1)

∣∣∣∣1
0

=

(
∞∑
n=0

12n+1

n! (2n+ 1)

)
−

(
∞∑
n=0

02n+1

n! (2n+ 1)

)

=
∞∑
n=0

1

n! (2n+ 1)
.

Now just evaluate the first 2 terms to get the approximation:

≈ 1

1
+

1

3
=

4

3

7. Estimate

∫ 1

0

sinx2 dx using the first two terms of the Maclaurin series expansion.

This is similar to the previous problem.

First we have that the Maclaurin series for sinx is
∞∑
n=0

(−1)nx2n+1

(2n+ 1)!
. Since the radius of

convergence is infinite we can substitute in x2 for x to get the Maclaurin series for sin(x2),

which is
∞∑
n=0

(−1)n(x2)2n+1

(2n+ 1)!
=
∞∑
n=0

(−1)nx4n+2

(2n+ 1)!
. Integrating term by term we get

∫ 1

0

sinx2 dx =
∞∑
n=0

(−1)nx4n+3

(4n+ 3) · (2n+ 1)!

∣∣∣∣1
0

=

(
∞∑
n=0

(−1)n · 14n+3

(4n+ 3) · (2n+ 1)!

)
−

(
∞∑
n=0

(−1)n · 04n+3

(4n+ 3) · (2n+ 1)!

)

=
∞∑
n=0

(−1)n

(4n+ 3) · (2n+ 1)!
.

Now just evaluate the first 2 terms to get the approximation:

≈ 1

3 · 1!
− 1

7 · 3!
=

13

42
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8. Find the sum of the series
∞∑
n=0

(−1)n π2n+1

(2n+ 1)!
.

This is the Maclaurin series for sinx with x = π. Since the Maclaurin series converges to
sinx for all x, the series above converges to sin π = 0

9. Find the sum of the series
∞∑
n=0

(−1)n π2n

4n (2n)!
.

This looks similar to the Maclaurin series for cosx with something plugged in for x. But
there is a 4n in the denominator, so we must evaluate carefully to make sure. We can
rewrite the above as

∞∑
n=0

(−1)n
(
π
2

)2n
(2n)!

which now looks exactly like cosx with x = π
2
. Since the Maclaurin series converges to

cosx for all x, the series above converges to cos
(
π
2

)
= 0

10. Find the sum of the series
∞∑
n=2

5n

n!
.

This looks like the Maclaurin series for ex (which converges to ex for all x) with x = 5,
except that our series starts at n = 2 rather than n = 0. So to get the sum of our series we
will need to subtract off the “missing” n = 0 and n = 1 terms from the Maclaurin series.
We have

∞∑
n=2

5n

n!
=
∞∑
n=0

5n

n!
− 50

0!
− 51

1!
= e5 − 1− 5 = e5 − 6

11. Find the sum of the series
∞∑
n=0

(−1)n

(
√

3)2n+1 (2n+ 1)
.

Recall that

tan−1(x) =
∞∑
n=0

(−1)n x2n+1

2n+ 1

with radius of convergence R = 1. So our series looks like it could be tan−1(x) with
something plugged in, as long as what we are plugging in is between −1 and 1. We can
rewrite our series as

∞∑
n=0

(−1)n
(

1√
3

)2n+1

2n+ 1
;

since −1 < 1√
3
< 1 we see that the series above converges to tan−1

(
1√
3

)
=

π

6

13



12. Set up, but do not evaluate, an integral for the length of the curve
x =

1

3
t3

y = cos t
with

0 ≤ t ≤ π

2
.

We have (x′)2 = t4 and (y′)2 = (− sin t)2 = sin2 t. So the arc length is

L =

∫ π/2

0

√
t4 + sin2 t dt

13. For the curve
x = 1 + tan t
y = cos 2t

, find
dy

dx
.

dy

dt
= −2 sin 2t and

dx

dt
= sec2 t, so

dy

dx
=
−2 sin 2t

sec2 t
= −4 sin t cos3 t

14


