Worksheet - Techniques of Integration Necessary for Section 6.3

1. $\int \frac{1}{2 x-1} d x$.

Hint. Let $u=2 x-1$.
Let $u=2 x-1$. Then $d u=2 d x$, and we get

$$
\frac{1}{2} \int \frac{1}{u} d u=\frac{1}{2} \ln |u|+C=\frac{1}{2} \ln |2 x-1|+C
$$

Moral. You can integrate anything that looks like $\frac{\text { constant }}{\text { linear }}$!
2. $\int \frac{2 x-5}{\left(x^{2}-5 x\right)^{3}} d x$.

Hint. Let $u=x^{2}-5 x$.
Let $u=x^{2}-5 x$. Then $d u=2 x-5 d x$, and we get

$$
\int \frac{1}{u^{3}} d u=\int u^{-3} d u=-\frac{1}{2} u^{-2}+C=-\frac{1}{2(2 x-5)^{2}}+C
$$

Moral. Always check to see if you can use u-substitution before trying anything fancy!
3. $\int \frac{4 x-1}{x^{2}+5} d x$.

Hint. Split up the fraction, then use u-substitution (with $u=x^{2}+5$) on one term and the following formula on the other:

$$
\int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C .
$$

We have

$$
\int \frac{4 x-1}{x^{2}+5} d x=\int \frac{4 x}{x^{2}+5} d x-\int \frac{1}{x^{2}+5} d x
$$

For the first term, let $u=x^{2}+5$. Then $d u=2 x d x$, and the integral becomes $2 \int \frac{1}{u} d u=$ $2 \ln |u|+C=2 \ln \left|x^{2}+5\right|+C$. For the second term, use the formula with $a=\sqrt{5}$. So the answer to the original integral becomes

$$
2 \ln \left|x^{2}+5\right|+\frac{1}{\sqrt{5}} \tan ^{-1}\left(\frac{x}{\sqrt{5}}\right)+C
$$

Moral: You can integrate anything that looks like $\frac{\text { linear }}{x^{2}+a^{2}}$!
4. $\int \frac{3 x-1}{x^{2}+6 x+11} d x$.

Hint. Complete the square in the denominator, i.e. $x^{2}+6 x+11=x^{2}+6 x+9+2=(x+3)^{2}+2$. Then let $u=x+3$, and apply the technique in problem 3 , above.

If $u=x+3$ then $x=u-3$. $d u=d x$, so completing the square as in the hint, we have

$$
\begin{aligned}
\int \frac{3 x-1}{x^{2}+6 x+11} d x & =\int \frac{3 x-1}{(x+3)^{2}+2} d x \\
& =\int \frac{3(u-3)-1}{u^{2}+2} d u \\
& =\int \frac{3 u-10}{u^{2}+2} d u \\
& =3 \int \frac{u}{u^{2}+2} d u-10 \int \frac{1}{u^{2}+2} d u .
\end{aligned}
$$

Now this looks just like the previous problem. Use u-substitution (or choose a different letter, since we're already in u) for the first term, and the inverse-tangent formula for the second; we get

$$
\begin{aligned}
\frac{3}{2} \ln \left|u^{2}+2\right|-\frac{10}{\sqrt{2}} \tan ^{-1}\left(\frac{u}{\sqrt{2}}\right)+C & =\frac{3}{2} \ln \left|(x+3)^{2}+2\right|-\frac{10}{\sqrt{2}} \tan ^{-1}\left(\frac{x+3}{\sqrt{2}}\right)+C \\
& =\frac{3}{2} \ln \left|x^{2}+6 x+11\right|-\frac{10}{\sqrt{2}} \tan ^{-1}\left(\frac{x+3}{\sqrt{2}}\right)+C
\end{aligned}
$$

Moral: You can integrate anything that looks like $\frac{\text { linear }}{\text { quadratic }}$!
5. $\int \frac{x^{3}-3 x^{2}+1}{x^{2}+1} d x$.

Hint. Perform polynomial division.

Check to make sure you get $x-3+\frac{-x+4}{x^{2}+1}$. Integrate.

We verified this long division in class. Now we have

$$
\begin{aligned}
\int \frac{x^{3}-3 x^{2}+1}{x^{2}+1} d x & =\int\left(x-3+\frac{-x+4}{x^{2}+1}\right) d x \\
& =\frac{1}{2} x^{2}-3 x-\int \frac{x}{x^{2}+1} d x+4 \int \frac{1}{x^{2}+1} d x \\
& =\frac{1}{2} x^{2}-3 x-\frac{1}{2} \ln \left|x^{2}+1\right|+4 \tan ^{-1} x+C
\end{aligned}
$$

Moral. When the integrand is an improper rational function, perform polynomial division to rewrite the quotient as a polynomial plus a proper rational function, then apply the previous techniques.

