Section 6.2-Trigonometric Integrals Worksheet - Solutions
Recall that the Pythagorean identity

$$
\sin ^{2} x+\cos ^{2} x=1
$$

can be used to evaluate integrals of the form $\int \sin ^{m} x \cos ^{n} x d x$ as long as either m or n is odd. Practice this technique with the following integral:

1. $\int \sin ^{5} x \cos ^{2} x d x$

Since the power of $\sin x$ is odd, let $u=\cos x$. Then $d u=-\sin x d x$, and we have

$$
\begin{array}{rl|l}
& \int \sin ^{5} x \cos ^{2} x d x & =-\int\left(1-2 u^{2}+u^{4}\right) u^{2} d u \\
= & \int \sin ^{4} x \cos ^{2} x \sin x d x & =-\int\left(u^{2}-2 u^{4}+u^{6}\right) d u \\
=\int\left(1-\cos ^{2} x\right)^{2} \cos ^{2} x \sin x d x & & =-\frac{1}{3} u^{3}+\frac{2}{5} u^{5}-\frac{1}{7} u^{7}+C \\
=-\int\left(1-u^{2}\right)^{2} u^{2} d u & & =-\frac{1}{3} \cos ^{3} x+\frac{2}{5} \cos ^{5} x-\frac{1}{7} \cos ^{7} x+C
\end{array}
$$

Now we will develop a similar strategy for integrals of the form $\int \tan ^{m} x \sec ^{n} x d x$. What do you get when you divide both sides of the Pythagorean identity by $\cos ^{2} x$? Simplify your answer and write the new identity here:

$$
\tan ^{2} x+1=\sec ^{2} x
$$

(it should be in terms of $\tan x$ and $\sec x$).
Now try the following integrals. Work with your group to develop a strategy for using the new identity (also called a Pythagorean identity since it comes directly from the other one) to solve these: ${ }^{1}$
2. $\int \tan ^{6} x \sec ^{2} x d x$

Here we don't need any identities. We simply let $u=\tan x$, so that $d u=\sec ^{2} x d x$, and we have

$$
\begin{aligned}
\int \tan ^{6} x \sec ^{2} x d x & =\int u^{6} d u \\
& =\frac{1}{7} u^{7}+C \\
& =\frac{1}{7} \tan ^{7} x+C
\end{aligned}
$$

[^0]Write your new identity again here, for reference:
$\tan ^{2} x+1=\sec ^{2} x$
3. $\int \tan ^{2} x \sec ^{6} x d x$

The power of $\sec x$ is even, so we can let $d u=\sec ^{2} x d x$ (i.e. let $u=\tan x$) and still be left with an even power of $\sec x$ on which to use the Pythagorean identity. We have

$$
\begin{aligned}
& \int \tan ^{2} x \sec ^{6} x d x \\
= & \int \tan ^{2} x \sec ^{4} x \sec ^{2} x d x \\
= & \int \tan ^{2} x\left(\tan ^{2} x+1\right)^{2} \sec ^{2} x d x \\
= & \int u^{2}\left(u^{2}+1\right)^{2} d u
\end{aligned}
$$

$$
=\int u^{2}\left(u^{4}+2 u^{2}+1\right) d u
$$

$$
=\int\left(u^{6}+2 u^{4}+u^{2}\right) d u
$$

$$
=\frac{1}{7} u^{7}+\frac{2}{5} u^{5}+\frac{1}{3} u^{3}+C
$$

$$
=\frac{1}{7} \tan ^{7} x+\frac{2}{5} \tan ^{5} x+\frac{1}{3} \tan ^{3} x+C
$$

4. $\int \tan ^{3} x \sec x d x$

Here the above strategy does not work, since the power of $\sec x$ is odd. However, since the power of $\tan x$ is odd, we can let $d u=\sec x \tan x d x$ (i.e. let $u=\sec x$ and still be left with an even power of $\tan x$ on which to use the Pythagorean identity. We have

$$
\begin{array}{rl|l}
& \int \tan ^{3} x \sec x d x & =\int\left(u^{2}-1\right) d u \\
= & \int \tan ^{2} x \sec x \tan x d x & =\int \frac{1}{3} u^{3}-u+C \\
=\int\left(\sec ^{2} x-1\right) \sec x \tan x d x & & =\frac{1}{3} \sec ^{3} x-\sec x+C
\end{array}
$$

Can you think of situations where your strategy will not work for integrals like $\int \tan ^{m} x \sec ^{n} x d x$?
In $\# 3$, the power of $\sec x$ is even. In this case our strategy was to let $u=\tan x$ and use the Pythagorean identity when needed to rewrite all but two of the powers of $\sec x$ in terms of $\tan x$.

In \#4, the power of $\tan x$ is odd. In this case our strategy was to let $u=\sec x$ and use the Pythagorean identity when needed to rewrite all but two of the powers of $\tan x$ in terms of $\sec x$.

This strategy will not work if the power of $\sec x$ is odd and the power of $\tan x$ is even. It also will not work if the power of $\sec x$ is 0 (i.e. if you have an integral of the form $\int \tan ^{m} x d x$), or if the power of $\tan x$ is 0 (i.e. if you have an integral of the form $\int \sec ^{n} x d x$). Can you think of ways to modify the above strategies to fit these cases?

[^0]: ${ }^{1}$ Hint. You may want to recall the derivatives of $\tan x$ and of $\sec x$ before you begin.
 $(\tan x)^{\prime}=\sec ^{2} x$

 $$
 (\sec x)^{\prime}=\underline{\sec x \tan x}
 $$

