Section 6.2 - Trigonometric Integrals Worksheet

Recall that the Pythagorean identity

$$
\sin ^{2} x+\cos ^{2} x=1
$$

can be used to evaluate integrals of the form $\int \sin ^{m} x \cos ^{n} x d x$ as long as either m or n is odd. Practice this technique with the following integral:

1. $\int \sin ^{5} x \cos ^{2} x d x$

Now we will develop a similar strategy for integrals of the form $\int \tan ^{m} x \sec ^{n} x d x$. What do you get when you divide both sides of the Pythagorean identity by $\cos ^{2} x$? Simplify your answer and write the new identity here:
(it should be in terms of $\tan x$ and $\sec x$).
Now try the following integrals. Work with your group to develop a strategy for using the new identity (also called a Pythagorean identity since it comes directly from the other one) to solve these: ${ }^{1}$
2. $\int \tan ^{6} x \sec ^{2} x d x$

[^0]$(\tan x)^{\prime}=$ \qquad $(\sec x)^{\prime}=$ \qquad

Write your new identity again here, for reference:
3. $\int \tan ^{2} x \sec ^{6} x d x$
4. $\int \tan ^{3} x \sec x d x$

Can you think of situations where your strategy will not work for integrals like $\int \tan ^{m} x \sec ^{n} x d x$?

[^0]: ${ }^{1}$ Hint. You may want to recall the derivatives of $\tan x$ and of $\sec x$ before you begin.

