Finite Groups of Derangements on the n-Cube II

Larry Cusick

Department of Mathematics California State University, Fresno. Fresno, California, USA Oscar Vega *

Department of Mathematics California State University, Fresno. Fresno, California, USA

larryc@csufresno.edu

ovega@csufresno.edu

Submitted: Mar 23, 2011; Accepted: July 4, 2011; Published: XX Mathematics Subject Classification: Primary 05E18; Secondary 05E10, 52C99, 20B25

Abstract

Given $k \in \mathbb{N}$ and a finite group G, it is shown that G is isomorphic to a subgroup of the group of symmetries of some *n*-cube in such a way that G acts freely on the set of k-faces, if and only if, $gcd(k, |G|) = 2^s$ for some non-negative integer s.

The proof of this result is existential but does give some ideas on what n could be.

1 Preliminaries

The *n*-dimensional cube, or simply *n*-cube, is denoted by Q_n and will be represented as having vertices the points of $\{1, -1\}^n \subset \mathbb{R}^n$, and edges joining any two vertices that differ in exactly one component. A *k*-face *F* of the *n*-cube is a *k*-subcube whose vertices have n - k of the coordinates predetermined,

$$F = \{ \mathbf{y} = (y_1, \dots, y_n) \in Q_n; \ y_{i_1} = a_{i_1}, \dots, y_{i_{n-k}} = a_{i_{n-k}} \},\$$

where, of course, each $a_{i_i} = \pm 1$.

It is known that the automorphism group of the cube is $B_n = S_n \wr \mathbb{Z}_2$, the wreath product of S_n and \mathbb{Z}_2 (in this article we will use $\mathbb{Z}_2 = \{\pm 1\}$). This group is sometimes called the hyperoctahedral group, or the group of signed permutations; it is a Coxeter group of type $B_n = C_n$, and thus a Weyl group. We denote the elements in B_n by $(\sigma; \mathbf{x})$, where $\sigma \in S_n$ and $\mathbf{x} = (x_1, x_2, \dots, x_n) \in (\mathbb{Z}_2)^n$. The multiplication is given by

$$(\sigma; \mathbf{x})(\tau; \mathbf{y}) = (\sigma\tau; \mathbf{x}^{\tau}\mathbf{y})$$

where $\mathbf{x}^{\tau} = (x_{\tau(1)}, x_{\tau(2)}, \cdots, x_{\tau(n)})$, and $\mathbf{x}^{\tau} \mathbf{y}$ is the standard component-to-component multiplication in \mathbb{R}^n . The (right) action of B_n on Q_n is given by $(\sigma, \mathbf{x})\mathbf{y} = \mathbf{y}^{\sigma}\mathbf{x}$.

^{*}The authors would like to thank the referees for their helpful advice, which greatly improved the exposition.

Definition 1 With the same notation as above.

- 1. Let G be a group acting on a set X. We say that $g \in G$ acts freely on X if and only if g does not fix any points in X.
- 2. A derangement of the k-faces of Q_n is an element of B_n that acts freely on the set of all k-faces of Q_n .
- 3. A subgroup H of B_n is said to be a derangement of the k-faces of Q_n if every non-identity element in H is a derangement of the k-faces of Q_n .
- 4. A group G will be called a derangement of the k-faces of Q_n if it is isomorphic to subgroup of B_n that is a derangement of the k-faces of Q_n . In such a case we introduce the notation

$$G \vdash_k B_n$$

We want to study conditions for a finite group G to be a derangement of the k-faces of some Q_n . The main tool we will use in this article is the Chen-Stanley criterion. In order to get to it we first need to set some notation.

Definition 2 If $\sigma = (i_1, i_2, \dots, i_s)$ is a cycle in S_n and $\mathbf{x} \in (\mathbb{Z}_2)^n$, then

$$x_{\sigma} = x_{i_1} x_{i_2} \cdots x_{i_s}$$

Theorem 1 (Chen-Stanley Criterion [2]) A symmetry $(\pi; \mathbf{x}) \in B_n$ is a derangement of the set of k-faces in Q_n if, and only if, for every k-element π -invariant subset $I \subset \{1, \ldots, n\}, x_{\sigma} = -1$ for some cycle σ in π disjoint from I.

Note that, in particular, $(\pi; \mathbf{x}) \in B_n$ is a vertex-derangement (i.e. k = 0) if, and only if, $x_{\sigma} = -1$ for some cycle σ in π . This is because there is one zero-element subset (the empty set), which is pi-invariant (vacuously) and every cycle is disjoint from the empty set.

In a previous article [3], the first author proved the following results.

Theorem 2 Assume k and n are always non-negative integers, and that the notation is the same used before

- (i) If G is a group of odd order, then $G \vdash_k B_n$ for some n if, and only if, gcd(k, |G|) = 1.
- (ii) For any $m \ge 2$ and $k \ge 0$, $\mathbb{Z}_m \vdash_k B_n$ for some n if, and only if, $gcd(k,m) = 2^s$ for some $s \ge 0$.
- (iii) If G is a finite group and $G \vdash_k B_n$ for some $n \ge 1$, then $gcd(k, |G|) = 2^s$ for some $s \ge 0$.
- (iv) If $|G| = 2^s$, then for all k there exists an n such that $G \vdash_k B_n$.

The main theorem in this article (theorem 6) is, essentially, the converse of theorem 2 (iii). We now move on to present concepts and results that will be needed in the proof of theorem 6.

2 Sufficiency

We can think of $G \vdash_k B_n$ as saying there is a faithful representation of G in the group of signed permutations, with an extra condition. Also, the hyperoctahedral group contains a copy of S_n , so any faithful representation of a group G into S_n can be easily 'extended' to an injective homomorphism $G \to B_n$.

Definition 3 With the same notation used in the previous section we define:

- 1. An element $(\pi; \mathbf{x}) \in B_n$ is called sufficient if the following condition is satisfied.
 - (a) If $(\pi; \mathbf{x})$ is of odd order, then π has no fixed points.
 - (b) If $(\pi; \mathbf{x})$ is of even order, then there is a cycle σ in π for which $x_{\sigma} = -1$.
- 2. A representation of a group G into B_n is a homomorphism $\rho: G \to B_n$.
- 3. A representation $\rho : G \to B_n$ is called sufficient if $\rho(g)$ is sufficient for every nonidentity element $g \in G$.

Our idea is to consider a sufficient representation of a group G and then 'multiply' it with itself to create a representation for G that satisfies the conditions of the Chen-Stanley criterion. The way of multiplying representations we will use is defined next.

Definition 4 The outer product $\times : B_n \times B_m \to B_{n+m}$ is defined by

$$(\pi; \mathbf{x}) \times (\theta; \mathbf{y}) = (\pi \times \theta; \mathbf{x}, \mathbf{y})$$

where $\pi \times \theta$ is the permutation given by

$$\pi \times \theta = \left(\begin{array}{ccccc} 1 & 2 & \cdots & n & n+1 & \cdots & n+m \\ \pi(1) & \pi(2) & \cdots & \pi(n) & n+\theta(1) & \cdots & n+\theta(m) \end{array}\right)$$

The following *fundamental construction* will allow us to link the concepts of sufficient representation and derangements of k-faces.

Remark 1 (Fundamental Construction) Let $\Delta_t, \Delta_t^{(i)} : B_n \to B_{nt}$ be given by $\Delta_t(g) = \underbrace{g \times \cdots \times g}_{t \text{ times}}$ and $\Delta_t^{(i)}(g) = \underbrace{1 \times \cdots \times g \times \cdots \times 1}_{t \text{ factors}}$, where the element g appears only in the *i*-position. Note that $\Delta_t(g) = \Delta_t^{(1)}(g) \cdots \Delta_t^{(n)}(g)$.

For a cycle $\sigma = (i_1, \ldots, i_r)$, let $\tilde{\sigma}$ be the set $\{i_1, \ldots, i_r\}$, and for a permutation π of $\{1, \ldots, n\}$ with cycle decomposition $\pi = \sigma_1 \cdots \sigma_\ell$, let the *cycle set* of π be the set $\{\tilde{\sigma}_1, \ldots, \tilde{\sigma}_\ell\}$.

Now notice that if we write $\Delta_t(g) = (\theta, \mathbf{y})$ and $\Delta_t^{(i)}(g) = (\theta^{(i)}, \mathbf{y}^{(i)})$, then the cycle set for θ is equal to the disjoint union $S = S_1 \cup \cdots \cup S_n$ where each S_i is the cycle set for $\theta^{(i)}$. It follows that for any fixed natural number k, and $g \in B_n$, there is a sufficiently large natural number t (t > k will do) so that any k-element subset $I \subset \{1, \ldots, nt\}$ is disjoint from some cycle set S_i as derived from $\Delta_t^{(i)}(g)$ above.

Theorem 3 Suppose $gcd(|G|, k) = 2^s$ for some s, and there is a sufficient representation $\rho: G \to B_r$. Then $G \vdash_k B_q$ for some q.

Proof. First, suppose $g = (\pi, \mathbf{x}) \in B_r$ is an even order element and $x_{\sigma} = -1$ for some cycle σ in π . Then, by the Fundamental Construction above, there is a sufficiently large outer product $\Delta_t(g) = (\theta, \mathbf{y})$ for which if $I \subset \{1, \ldots, rt\}$ (θ -invariant or not) then I is disjoint from some cycle set S_i . By assumption, $x_{\sigma} = -1$. The corresponding equivalent cycle σ' in $\theta^{(i)}$, hence in θ , then satisfies $y_{\sigma'} = x_{\sigma} = -1$.

Now suppose $g = (\pi, \mathbf{x})$ is non-trivial and has odd order, π has no fixed points, and $gcd(|g|, k) = 2^s$ for some s. Then, by necessity, gcd(|g|, k) = 1. Let $\Delta_t(g) = (\theta, \mathbf{y})$. It also follows that θ is an odd order permutation, and so for any t there is no k-element θ -invariant subset $I \subset \{1, \ldots, rt\}$.

Now, we may assume $G < B_r$ and $gcd(|G|, k) = 2^s$ for some s. By choosing t to be sufficiently large for all even order elements, we have a representation $\rho : G \to B_{rt}$ that satisfies the Chen-Stanley condition.

What is now left to be proved is that every group G such that $gcd(|G|, k) = 2^s$, for some s, admits a sufficient representation in some B_n . We will prove this in the next section by inducing a representation for G from its 2-Sylow subgroup (recall that the case |G| odd has already been discussed in theorem 2). The following theorem justifies us wanting to induce from the 2-Sylow subgroup of G.

Theorem 4 (See [3]) Every finite 2-group has a sufficient representation.

3 Induced Representations

Suppose H is a subgroup of a finite group G of index m and $\rho_0 : H \to B_n$ is a faithful representation. There is a representation $\rho : G \to B_{nm}$, induced up from ρ_0 whose construction we will now describe.

First choose a complete set of coset representatives $\{g_1, \ldots, g_m\}$ of the subgroup H,

$$G = g_1 H \cup \dots \cup g_m H.$$

Pick $g \in G$. For each i = 1, ..., m, the product gg_i is in one of the cosets, and so $gg_i = g_{\theta(i)}h_i$ for some permutation θ of $\{1, ..., m\}$ and $h_i \in H$. We can write each $\rho_0(h_i) = (\pi_i; \mathbf{x}_i)$. Then

$$\rho(g) = (\pi; \mathbf{x_1}, \dots, \mathbf{x}_m)$$

where π is the permutation on $\{1, \ldots, nm\}$ that permutes the successive *m*-blocks via θ , while the block interiors are permuted via the corresponding π_i . Specifically, for $j \in \{1, \ldots, nm\}$, write j = an + b where $0 \le a < m$ and $0 < b \le n$, then

$$\pi(j) = \pi_{\theta(a+1)}(b) + (\theta(a+1) - 1)n.$$

Remark 2 Note that if we restrict the induced representation ρ back to the subgroup H, then $\rho|_H$ is the direct sum of m copies of ρ_0 (see, for example, [5]). Thus, for $h \in H$,

$$\rho(h) = \rho_0(h) \times \cdots \times \rho_0(h) \quad (m \text{ times}).$$

It follows immediately that if ρ_0 is sufficient, then so is $\rho|_H$.

Lemma 1 If H is a finite 2-group, $g \in G$ is an odd order element and $\rho(g) = (\pi; \mathbf{x})$, then π has no 1-cycle. That is, $\rho(g)$ is sufficient.

Proof. Suppose π has a 1-cycle. Then θ must fix one block, that is θ has a 1-cycle. So, $gg_j = g_jh$ for some $j = 1, \ldots, m$ and $h \in H$. Thus, $g_j^{-1}gg_j \in H$, that is g cannot be of odd order.

Theorem 5 (See [3]) Two symmetries $(\theta; \mathbf{y}), (\pi; \mathbf{x}) \in B_n$ are conjugate if, and only if, (1) θ and π have the same cycle structure and

(2) for some pairing of respectively equal length cycles in the two permutations $\tau_1 \leftrightarrow \sigma_1, \ldots, \tau_s \leftrightarrow \sigma_s$, we have $y_{\tau_j} = x_{\sigma_j}$ for all $j = 1, \ldots, s$.

Corollary 1 If H is a Sylow 2-subgroup of G, ρ_0 is sufficient, and $g \in G$ is an element whose order is a power of 2, then $\rho(g)$ is sufficient.

Proof. Since Sylow subgroups are conjugate, some conjugate of g is an element of H. The corollary now follows from theorem 5, the assumptions and remark 2.

4 Main Theorem

It is our aim in this section to prove:

Theorem 6 (Main Theorem) Suppose G is a finite group and k is a non-negative integer with $gcd(|G|, k) = 2^s$ for some non-negative integer s, then there is positive integer q for which $G \vdash_k B_q$.

According to theorem 3, the Main Theorem will follow from the assumptions if we can prove the existence of a sufficient representation $\rho: G \to B_r$ for some r.

Theorem 7 Every finite group has a sufficient representation.

We begin with a few lemmas.

Lemma 2 In B_m , Suppose $\alpha = (\sigma; \mathbf{x})$ where $\sigma = (12...m)$ and $\alpha^t = (\sigma^t; \mathbf{y})$. Then $y_{\sigma} = (x_{\sigma})^{t/\operatorname{gcd}(m,t)}$.

Proof. The permutation σ^t is a product of $(m/\gcd(m,t))$ -cycles in the form $(i, i + t, \ldots, i + (m/\gcd(m,t)-1)t)$ for $i = 1, \ldots, \gcd(m,t)$ where terms are mod m. And, the *j*th component of \mathbf{y} is $y_j = x_j x_{j+1} \cdots x_{j+t-1}$ (indices computed mod m). Thus,

$$y_{\sigma} = (x_1 \cdots x_{i+t-1}) \cdots (x_{i+(m/\gcd(m,t)-1)t}, \dots x_{i+mt/\gcd(m,t)-1})$$

= $x_1 x_2 \dots x_{mt/\gcd(m,t)}$ (indices mod m)
= $(x_{\sigma})^{t/\gcd(m,t)}$.

Remark 3 It is known that any element $\alpha \in B_m$ is a product of disjoint *bicycles*. A bicycle is any element $(\sigma; \mathbf{x}) \in B_m$ in which σ is a cycle and $x_j = 1$ if $\sigma(j) = j$. Two bicycles are called disjoint if their respective permutation parts are disjoint in the usual sense. See [3] for more details.

Lemma 3 Suppose $\alpha = (\pi; \mathbf{x}) \in B_m$ and $x_{\sigma} = 1$ for every cycle σ in π . If $\alpha^t = (\pi^t; \mathbf{y})$, then $y_{\psi} = 1$ for every cycle ψ in π^t .

Proof. By factoring α as a product of disjoint *bicycles*, it is enough to prove the lemma for π = cycle. And, in fact, we may assume $\alpha = (\sigma; \mathbf{x}) \in B_m$ where σ is the cycle $(12 \dots m)$, as external products will allow us to 'paste' these cycles. Lemma 3 now follows from lemma 2.

We can now prove the Main Theorem.

Proof. [Proof of Theorem 7] Let H be a Sylow 2-subgroup of G, of index m. By corollary 4, there is a sufficient representation $\rho_0 : H \to B_n$ for some n. Let $\rho : G \to B_{nm}$ be the representation induced up from ρ_0 . We will prove ρ is sufficient.

Pick $g \in G$, a non-identity element. If the order of g is odd or a power of 2, then $\rho(g)$ is sufficient by lemma 1 and corollary 1. Now assume the order of g to be $2^a(2b+1)$ with a > 0. Notre that $g' = g^{2b+1}$ has order 2^a , and so $\rho(g')$ is sufficient. It follows that if we write $\rho(g') = (\pi; \mathbf{x})$, then $x_{\sigma} = -1$ for some cycle σ in π . It follows from lemma 3, that if $\rho(g) = (\theta; \mathbf{y})$, then $y_{\psi} = -1$ for some cycle ψ in θ . That is, $\rho(g)$ is sufficient. \Box

References

- M. Baake. Structure and Representations of the Hyperoctahedral Group, J. Math. Phys. 25, (1984), 3171-3182.
- [2] W. Y. C. Chen & R. P. Stanley. Derangements of the n-cube, Discrete Mathematics 115 (1993) 65-75.
- [3] L. W. Cusick. *Finite Groups of Derangements on the n-Cube*, To Appear in Ars Combinatoria.
- [4] N. Metropolis & G-C. Rota. Combinatorial Structure of the Faces of the n-Cube, SIAM J. Appl. Math Vol. 35, No. 4 (1978), 689-694.
- [5] J. P. Serre. *Linear Representations of Finite Groups*, Springer-Verlag (1977).