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Abstract

W. Y. C. Chen and R. P. Stanley have characterized the symmetries of the
n-cube that act as derangements on the set of k-faces. In this paper we aim
to use their result to characterize those finite subgroups of symmetries whose
non-trivial members are derangements of the set of k-faces.
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1 Introduction

In [3], W. Y. C. Chen and R. P. Stanley characterized the symmetries of the
n-cube that act as derangements on the set of k-faces. Their elegant and simple
criterion is easy to check, involving only permutation cycle decompositions and
sign checking. In this paper we aim to use their result to explore finite subgroups
of symmetries whose non-trivial members are derangements of the set of k-faces.
Our main results are (1) a characterization of the cyclic subgroups that can act
freely on the set of k-faces of some n-cube, (2) a necessary condition for any finite
group to act freely on the set of k-faces of some n-cube and (3) that every finite 2-
group acts freely on the set k-faces of some n-cube. The techniques used, beyond
the Chen-Stanley condition, are elementary combinatorics, permutations and
group theory.

The original motivation for this research was far removed from the combi-
natorics of k-faces on the n-cube. The so-called topological space problem asks
which groups can act freely on an m-sphere, Sm. One can then ask which finite
groups can act freely on a cartesian product of m-spheres, (Sm)

n
. A conse-

quence of the results in this paper is that the finite groups that can act freely
on
(
S2m

)n
are precisely the finite 2-groups. Furthermore, a free action is homo-

logically equivalent to a free action on
(
S0
)n

, the set of vertices on the n-cube.
Thus we are motivated to ask which finite groups can act freely on the set of
k-faces of the n-cube.

2 The Chen-Stanley Criterion

The n-cube, Qn, will be represented as a graph. The vertices of Qn are the
elements of (Z2)

n
, where Z2 = {1,−1}, and two vertices x and y are connected

by a unique edge if, and only if, they differ in only one component. A symmetry
of Qn can be represented by a signed permutation (π;x1, . . . , xn) where π is
an element of the symmetric group Sn and each xi is either 1 or −1. Signed
permutations act (on the right) of the vertices of the n-cube by

(y1, . . . , yn)(π;x1, . . . , xn) = (yπ1x1, . . . , yπnxn).

The group of symmetries of the n-cube is denoted by Bn, the hyperoctahedral
group, and has the structure of a wreath product Bn = Sn o Z2 = Sn × (Z2)n,
with group multiplication given by

(θ; y1, . . . , yn)(π;x1, . . . , xn) = (θπ; yπ1x1, . . . , yπnxn).

By a k-face of the n-cube, we mean a k-subcube whose vertices y = (y1, . . . , yn) ∈
Qn have n− k of the coordinates predetermined,

F = F{yi1 = ai1 , . . . , yin−k
= ain−k

},

where each aij = ±1. It is easy to see that the cardinality of the set of k-faces
on the n-cube is 2n−k

(
n
k

)
. A symmetry (π; x) ∈ Bn acts on the set of k-faces,
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by

F{yi1 = ai1 , . . . , yin−k
= ain−k

}(π; x) = F{yj1 = ai1xj1 , . . . , yjn−k
= ain−k

xjn−k
},

where i1 = πj1, . . . , in−k = πjn−k. In [3], Chen and Stanley provide a necessary
and sufficient condition which is easy to check for a symmetry (π; x) ∈ Bn to be
a derangement of the set of k-faces. To state the Chen-Stanley criterion, and
for later applications, we will use the following notation: If σ = (i1, i2, . . . , is)
is a cycle in Sn and x ∈ (Z2)

n
, then

xσ = xi1xi2 · · ·xis .

Theorem 1 (Chen-Stanley Criterion) [3] A symmetry (π; x) ∈ Bn is a derange-
ment of the set of k-faces in Qn if, and only if, for every k-element π-invariant
subset I ⊂ {1, . . . , n}, xσ = −1 for some cycle σ in π disjoint from I.

This leads naturally to the problem of computing the number k-faces left
fixed by a given symmetry (π; x) ∈ Bn. Towards a solution, we define a π-
invariant subset I ⊂ {1, . . . , n} to be (π; x)-good if xσ = 1 for every cycle σ in π
that is disjoint from I. The Chen-Stanley criterion is equivalent to this: (π; x)
fixes some k-face if, and only if, there exists a (π; x)-good subset I.

Theorem 2 The number of k-faces left fixed by (π; x) ∈ Bn is equal to∑
I

2cI

where the sum is taken over the set of (π; x)-good k-element subsets I ⊂ {1, . . . , n}
and cI is the number of cycles in π disjoint from I.

Proof. Suppose the k-face F = F{yi1 = ai1 , . . . , yin−k
= ain−k

} is left fixed by
(π; x) ∈ Bn,

F{yi1 = ai1 , . . . , yin−k
= ain−k

} = F{yj1 = ai1xj1 , . . . , yjn−k
= ain−k

xjn−k
},

where i1 = πj1, . . . , in−k = πjn−k. Let I be the complement of the set {i1, . . . , in−k}
in {1, . . . , n}. Clearly {i1, . . . , in−k}, and hence I, is π-invariant. We claim that
I is (π; x)-good. To see why this is true, let σ = (is1 , . . . , ist) by a cycle in
π, disjoint from I (so its components are elements of {i1, . . . , in−k}). Then for
y ∈ F ,

yis1 = aπis1xis1
= yis2xis1
= aπis2xis2xis1
...

= aπistxist · · ·xis1
= ais1xσ

= yis1xσ.
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Thus xσ = 1, and so I is (π; x)-good. Also note, from the above string of equal-
ities, that we are free to choose the value of ais1 = ±1, which then determines
the remaining values ais2 , . . . , aist corresponding to the cycle σ. This gives a
count of 2cI k-faces with the starting index set {i1, . . . , in−k}, where I is the
complementary index set. The only contributing index sets would be those for
which I is (π; x)-good, giving a total count of∑

I

2cI .

3 Structure of the Hyperoctahedral Group

We will find the following notation, and resulting formulas, convenient. If z =
(z1, . . . , zn) and x = (x1, . . . , xn) are vectors in (Z2)n, we will write zx for the
vector (z1x1, . . . , znxn). Also, we will write yπ for the vector (yπ1, . . . , yπn). In
this way, the group operation in Bn becomes

(θ; y)(π; x) = (θπ; yπx).

Similarly, the (right) action of Bn on the vertices of Qn becomes y(π; x) = yπx.
And inductively, the t-th power of (π; x) is given by the formula

(π; x)t = (πt; xπ
t−1

xπ
t−2

· · ·x).

Theorem 3 The order of (π; x) is

|(π; x)| =
{

2|π|, if xσ = −1 and |π|/|σ|is odd for some cycle σ in π;
|π|, otherwise.

Proof. Suppose that t is the order of π. Pick i = 1, . . . , n and let σ be the cycle
in π that contains i. The i-th component of xπ

t−1

xπ
t−2 · · ·x is then

xπt−1ixπt−2i · · ·xi = (xσ)t/|σ|

=

{
−1, if xσ = −1 and t/|σ| is odd;

1, otherwise.

The theorem now follows.

The following consequence will find employment later in the paper.

Corollary 1 If the order of (π; x) ∈ Bn is odd, then xσ = 1 for every cycle in
π.
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We will use bicycle decompositions of symmetries in Bn. This is similar to
cycle decompositions for permutations. Any element (σ; x) ∈ Bn in which σ is
a cycle and xj = 1 if σ(j) = j will be called a bicycle. Two bicycles are called
disjoint if their respective permutation parts are disjoint in the usual sense. If
π = σ1 · · ·σt is a disjoint cycle decomposition of the permutation π (we include
cycles of length 1), and g = (π; x) ∈ Bn, we let xi = (xi1, . . . , x

i
n) where

xij =

{
1, if σi(j) = j;
xj , otherwise.

We then have the disjoint bicycle decomposition g = g1 · · · gt where gi = (σi; x
i)

for i = 1, . . . , t. From this discussion, we can see that every element of Bn has a
disjoint bicycle decomposition. The proof of the following theorem is elementary
and will be omitted.

Theorem 4 (Uniqueness of Disjoint Bicycle Decompositions) If π = σ1 · · ·σt
is a disjoint cycle decomposition of the permutation π, and if gi = (σi; x

i) and
hi = (σi; y

i) are bicycles for each i = 1, . . . , t and if g = g1 · · · gt = h1 · · ·ht,
then gi = hi for each i = 1, . . . , t.

When k = 0, the Chen-Stanley criterion says this: A symmetry (π; x) ∈ Bn
fixes a vertex on the n-cube if, and only if, xσ = 1 for every cycle σ in π.
Furthermore, we can use Theorem 2 to see that if (π; x) fixes a vertex, it fixes
2t vertices where t is the number of cycles in π. One consequence is a way to
recognize conjugates in Bn.

Theorem 5 Two symmetries (θ; y), (π; x) ∈ Bn are conjugate if, and only if,
(1) θ and π have the same cycle structure and (2) for some pairing of respectively
equal length cycles in the two permutations τ1 ←→ σ1, . . . , τs ←→ σs, we have
yτj = xσj for all j = 1, . . . , s.

Proof. Since part (1) of the theorem follows from the well known property
of conjugate permutations, we need only prove part (2). Suppose (π; x) =
(ψ; z)−1(θ; y)(ψ; z) where (ψ; z) ∈ Bn. Then

(π; x) = (ψ−1θψ; zψ
−1θψyψz).

Let w = yψx. Then a straightforward calculation establishes that z is a vertex
left fixed by (π; w).

Thus, per the discussion in the paragraph above the theorem, wσ = 1
for every cycle σ in π. If we write σ = (i1, . . . , im), and let τ = ψ−1σψ =
(ψ(i1), . . . , ψ(im)), then

wσ = wi1 · · ·wim
= (yψ(i1) · · · yψ(im))(xi1 · · ·xim)

= yτxσ.
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This, with wσ = 1, implies yτ = xσ.
On the other hand, suppose θ and π have the same cycle structure, θ =

τ1 · · · τm and π = σ1 · · ·σm where each cycle pair τj and σj have the same
length, and yτj = xσj

for every j = 1, . . . ,m. Then, θ and π are necessarily
conjugate. So there is a permutation ψ ∈ Sn such that τj = ψ−1σjψ for every
j = 1, . . . ,m. Again, if we let w = yψx,

wσj
= yτjxσj

= 1,

for every j = 1, . . . ,m. So we conclude (π; w) fixes some vertex z, zπw = z.
Thus

(ψ; z)−1(θ; y)(ψ; z) = (ψ−1θψ; zψ
−1θψyψz)

= (π; zπyψz)

= (π; zπ(yψx)(xz))

= (π; (zπw)(xz))

= (π; zxz)

= (π; x).

3.1 A Combinatorial Identity

In [3], it is proved that the number of symmetries in Bn that fix a vertex is
(2n − 1)!! = 1 · 3 · 5 · · · (2n − 1). By using Theorem 5 and counting conjugacy
classes, we obtain another formula, and consequently a combinatorial identity
that may be of independent interest.

We start with the set of partitions of n, denoted by Pn. The elements
of Pn are parameterized by the symbols λ = (1m1 2m2 . . . nmn) where n =
1 ·m1 + . . .+ n ·mn. The partitions Pn are in one-to-one correspondence with
the conjugacy classes in Sn, where the symbol λ above corresponds to the class
of a permutation π = σ1σ2 · · ·σt where t =

∑
jmj is the number of cycles in π

and the lengths of the cycles are equal to the integers in the partition. So, for
example, the partition 8 = 2+3+3 corresponds to the cycle type (12)(345)(678).

It follows from the above paragraph and Theorem 5 that the conjugacy class
of (π; x) is uniquely determined by an ordered pair (λ; z) where λ is the symbol
in Pn described above and z ∈ (Z2)t equals to the vector (xσ1

, xσ2
, . . . , xσt

).
As the conjugate of a vertex fixing symmetry is vertex fixing, the Chen-Stanley
condition (k = 0) tells us that a vertex fixing symmetry conjugacy class (λ; z)
is characterized by z = (1, 1, . . . , 1).

We will organize our count of vertex fixing symmetries in Bn according to
the conjugacy classes. Let’s begin with a particularly easy class, that repre-
sented by the pair ((j); 1). This corresponds to the bicycles (σ; x) where σ is a

6



cycle of length j and x has an even number of minus ones in the components
corresponding to σ. There are 2j−1 vectors x that satisfy this requirement and
so if f(j) is the number of permutations in the class represented by (j), then
the number of symmetries in the class ((j); 1) is f(j)2j−1. Now, consider a
class (λ; 1, 1, . . . , 1) where λ is the symbol (1m1 2m2 . . . nmn). Using a similar
argument as above, and by letting f(λ) be the number of permutations in the
class represented by λ, the number of symmetries in the class (λ; 1, 1, . . . , 1) is

f(λ)

n∏
j

2(j−1)mj = f(λ)2

(∑
j
(j−1)mj

)
= f(λ)2n−t(λ),

where n =
∑
j jmj and t(λ) =

∑
jmj . To go any further we will need to know

how to compute f(λ). This formula is easy to derive and appears to be well
known. You start with the k! ways of placing 1 through n in sequence with
parentheses appropriately placed for the given cycle structure. Now for each
cycle of length i divide by the number of ways to write the cycle, which is i.
Finally divide by the mi! ways you can permute the cycles of length i. The
resulting formula is

f(1m1 2m2 . . . nmn) =
n!

1m1m1!2m2m2! · · ·nmnmn!
.

Putting this together gives us a count of the set B∗n, the vertex fixing symmetries
in Bn,

|B∗n| =
∑

λ=(1m1 2m2 ... nmn )

2n−t(λ)n!

1m1m1!2m2m2! · · ·nmnmn!

=
∑

λ=(1m1 2m2 ... nmn )

2nn!

(2 · 1)m1m1!(2 · 2)m2m2! · · · (2 · n)mnmn!
,

where the sum is taken over the partitions λ ∈ Pn.

Reconciling our two counts gives us the advertised identity.

Theorem 6 Summing over the partitions of n,∑
λ=(1m1 2m2 ... nmn )

2nn!

(2 · 1)m1m1!(2 · 2)m2m2! · · · (2 · n)mnmn!
= (2n− 1)!!.

7



4 Finite Groups of Derangements

The fundamental question we address is this: Which finite groups G are iso-
morphic to subgroups of Bn, for some n, in such a way that G acts freely on
the set of k-faces of the n-cube?

Definition 1 If a finite group G is isomorphic to a subgroup of Bn in which
every non-identity element acts as a derangement of the set of k-faces, then we
write

G `k Bn.

The number of k-faces in the n-cube is 2n−k
(
n
k

)
. And so, if G `k Bn, then the

order of G divides 2n−k
(
n
k

)
. For example, if k = 0, then a necessary condition

for G `0 Bn is that G is a finite 2-group. We will see later that this condition
is sufficient.

If G is a finite group, then it is possible to embed G into an arbitrarily large
symmetric group G → Sn so that for every non-identity element g ∈ G, ρ(g)
is a permutation whose cycle structure is |g|-cycles only. (Use the diagonal of
the Cayley representation.) We can then compose this representation with the
natural embedding Sn → Bn given by π 7→ (π; 1, 1, . . . , 1). It follows that if
gcd(|g|, k) = 1, there are no ρ(g)-invariant k-element subsets of {1, 2, . . . , n},
and hence, by the Chen-Stanley condition, G `k Bn.

If (π; x) ∈ Bn is an odd order element, then by Corollary 1, xσ = 1 for
every cycle σ in π. Consequently, if (π; x) was a derangement of the set of k-
faces, then by the Chen-Stanley condition, there can be no π-invariant k-element
subset I ⊆ {1, 2, . . . , n}. It follows that k must be relatively prime to the order
of π (which is equal to the order of (π; x)).

We summarize the above discussion in the following theorem.

Theorem 7

1. If G is a finite group and gcd(|G|, k) = 1, then G `k Bn for some n.

2. If G is a group of odd order, then G `k Bn for some n if, and only if,
gcd(k, |G|) = 1.

We will next characterize those cyclic groups that are k-face derangements
on some cube. One convenient means of building symmetries out of old ones is
the outer product.

Definition 2 The outer product × : Bn ×Bm → Bn+m is defined by

(π; x)× (θ; y) = (π × θ; x,y)

where π × θ is the permutation [π1, . . . , πn, n+ θ1, . . . , n+ θn].
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Theorem 8 For any m ≥ 2 and k ≥ 0, Zm `k Bn for some n if, and only if,
gcd(k,m) = 2s for some s ≥ 0.

Proof. Because of Theorem 7, we may assume m is even, and so we’ll replace
m by 2m. We assume gcd(k, 2m) = 2s for some s ≥ 0. We wish to construct
an element g ∈ Bn, for some n, so that g generates a cyclic group Z2m `k Bn.
Pick q ≥ 0 so that mq ≤ k < m(q + 1). Let σ be the cycle σ = (1, 2, 3, . . . ,m),
y = (1, 1, 1, . . . , 1,−1) ∈ (Z2)

m
, h = (σ; y) ∈ Bt and

g = h× h× · · · × h︸ ︷︷ ︸
(q+1) times

∈ Bn

where n = m(q + 1). It is easy to see that the order of g is 2m, and we
wish to show that gi is a derangement of the set of k-faces in Qn for every
i = 1, 2, . . . , 2m − 1. We have gi = hi × · · · × hi where each hi is a product of
bicycles (ψ; z) and ψ is a m/ gcd(m, i)-cycle. We have exactly i/ gcd(m, i) of
the entries in z are equal to −1 if 0 < i ≤ m and (2m− i)/ gcd(m, i) entries are
equal to −1 if m < i < 2m. In either case, zψ = (−1)i/ gcd(m,i). In summary, if
we write gi = (π; x) then every cycle σ in π has length equal to m/ gcd(m, i)
and

xσ = (−1)i/ gcd(m,i).

Suppose π leaves a k-element set invariant. Then, k must be a multiple of
m/ gcd(m, i). We will be done with the “if” case if we can show that xσ = −1.
This is accomplished by the following lemma.

Lemma 1 If gcd(k, 2m) = 2s for some s ≥ 0, 0 < i < 2m, and m/ gcd(m, i)
divides k, then i/ gcd(m, i) is odd.

Proof of Lemma. Since gcd(k, 2m) is a power of 2 and m/ gcd(m, i) divides
k, we may conclude that m/ gcd(m, i) is a power of 2, m/ gcd(m, i) = 2a for
some a ≥ 0. Thus,

gcd(m, i) =
m

2a
.

It follows that i = rm/2a for some r that is relatively prime to 2a. Thus,

i

gcd(m, i)
=

rm/2a

m/2a

= r.

If a > 0, then clearly r is odd since it is relatively prime to 2a. If, however,
a = 0, then gcd(m, i) = 1. Since i < 2m, we may conclude that i = m and so
r = 1, also odd. This completes the proof of the lemma.

Finally, assume Z2m `k Bn for some n. We want to show that gcd(k, 2m) =
2s for some s ≥ 0. Suppose p is an odd prime that divides m. Then Zp is a
subgroup of Z2m, and so Zp `k Bn. By the above, we have gcd(p, k) = 1, that is
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p does not divide k. So the only prime 2m and k can possibly have in common
is 2, gcd(2m, k) = 2s, for some s ≥ 0.

Corollary 2 If G is a finite group and G `k Bn for some n ≥ 1, then gcd(k, |G|) =
2s for some s ≥ 0.

5 Finite 2-Groups

Since there are 2n vertices on the n-cube, any subgroup of Bn that acts freely
on the vertices (i.e. is a derangement of the vertices) is necessarily a 2-group.
We will first look at cyclic groups. To generate a cyclic subgroup of vertex
derangements, a symmetry’s order must be a power of 2. This is not a sufficient
condition however.

Theorem 9 A vertex derangement g ∈ Bn whose order is a power of 2 will
generate a cyclic subgroup of vertex derangements if, and only if, g contains a
bicycle that is a vertex derangment and whose order is equal to the order of g.

Proof. Suppose g = (π; x) is a vertex derangement whose order is a power
of 2. Then the order of every bicycle in g is also a power of 2, and since the
order of g is the least common multiple of the orders of its bicycles, there is
one bicycle h = (σ; y) in g whose order is that of g. Let’s suppose h is also
a vertex derangement, so yσ = −1 by the Chen-Stanley criterion. Then since
the bicycle decomposition of any power of g contains the bicycle decomposition
of the same power of h, we can see that g will generate a cyclic subgroup
of vertex derangments if, and only if, h will. Assume h2 6= 1. If we write
σ = (i1, i2, . . . , i2t), then σ2 = (i1, i3, . . . , i2t−1)(i2, i4, . . . , i2t), and so h2 is in
the form h2 = ((i1, i3, . . . , i2t−1); u)((i2, i4, . . . , i2t); v) for appropriate vectors
u and v fashioned from yσy. To see that h2 is a vertex derangement, we need
only check,

u(i1,i3,...,i2t−1)
= (yσy)(i1,i3,...,i2t−1)

= yσi1yi1yσi3yi3 · · · yσi2t−1
yi2t−1

= yi2yi1yi4yi3 · · · yi2t yi2t−1

= yσ

= −1.

Inductively then, all powers h2
k

are vertex derangements (except if equal to the
identity). For a general power hm, write m = 2t(2k + 1). Then since the order
of h is a power of 2, h2k+1 generates the same group as h. This implies h is a
power of h2k+1 and going back to the original definition of vertex derangement
(free action on vertices of the hypercube), we may conclude that h2k+1 is a
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vertex derangement. So by the same induction argument as above hm is a
vertex derangement.

Now suppose that every bicycle h in g whose order is that of g fixes a vertex.
Let the order of g be 2t. Any power of a vertex fixing symmetry is vertex fixing.
It follows that all of the bicycles in g2

t−1

fix a vertex, and so the non-identity
element g2

t−1

fixes a vertex.

A cyclic subgroup of vertex derangements of order 2t is generated by g =
((1, 2, 3, . . . , 2t−1);−1, 1, . . . , 1) ∈ B2t−1 . And by Theorem 9 and Theorem 3, if
Z2t `0 Bn, then n ≥ 2t−1.

One consequence of Theorem 9 is that any Z2m `0 Bn has a “squareroot”
Z2m+1 `0 B2n. To this end, define the “squaring map” ν : Bn −→ B2n by

ν(g) = g × g.

It is straightforward to verify that ν(g) = h2 where h = (θ; y) and

θ(j) =

{
j + n if 1 ≤ j ≤ n;
π(j − n) if n+ 1 ≤ j ≤ 2n

and

yj =

{
1 if 1 ≤ j ≤ n;
xj−n if n+ 1 ≤ j ≤ 2n.

Also, using the Chen-Stanley criterion (k = 0), one can easily verify that if g is
a vertex derangement, then so is ν(g).

Corollary 3 If G < Bn is a cyclic subgroup of vertex derangements of order
2m, then there is a cyclic subgroup of vertex derangements H < B2n of order
2m+1 for which ν(G) < H.

Proof. If σ = (i1, . . . , is) is a cycle in Sn, let σ′ be the cycle in S2n given by
σ′ = (i1, i1 + n, . . . , is, is + n). For a permutation written as a product of cycles
π = σ1 · · ·σt, we can let π′ = σ′1 · · ·σ′t. Then, letting θ be as in the paragraph
above, θ = π′ and we get the identity yσ′ = xσ for any cycle σ in π. So it follows
from the Chen-Stanley criterion (k = 0) that h is a vertex derangement if g is.

For a bicycle gi = (σi,x
i), we let g′i = (σ′i,1,x

i) where 1 = (1, . . . , 1) a
string of n 1’s. We do this so that if g = g1 · · · gt is a bicycle decomposition,
then h = g′1 · · · g′t is also a bicycle decomposition. By Theorem 9 we may
assume g1 is a vertex derangment whose order is equal to the order of g. Since
(g′1)2 = ν(g1), we know that the order of g′1 is equal to twice the order of g,
i.e. the order of h. Thus, again by Theorem 9, h generates a group of vertex
derangements.

We now wish to prove that every finite 2-group G acts as a group of vertex
derangements on some cube.
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Let’s begin with the Sylow 2-subgroups of symmetric groups, Γn < S2n .
Their construction is well known, see for example [5]. We begin with Γ1 = S2.
Inductively define Γn = S2 o Γn−1. This means that the elements of Γn are the
triples (τ ;φ1, φ2) ∈ S2 × (Γn−1)

2
with multiplication

(τ ;φ1, φ2)(ρ;ψ1, ψ2) = (τρ;φρ1ψ1, φρ2ψ2).

This group, Γn, can be viewed naturally as a subgroup of S2n in the following
way. Since φ1, φ2 ∈ S2n−1 , the pair (φ1, φ2) can be thought of as a permutation
of a 2n-tuple where φ1 permutes the first 2n−1 components and φ2 permutes the
second 2n−1 components. The non-trivial transposition τ simply flips the two
halves. The order of Γn is easily seen to be 22

n−1, which is the largest power
of 2 that divides 2n!, thus Γn is a Sylow 2-subgroup of S2n . Given the above
construction, the motive for the following lemma should be apparent.

Lemma 2 If G `0 Bn, then S2 oG `0 B2n+1.

Proof. We may replace G by its isomorphic image in Bn. Then we define a
function

ε : S2 oBn −→ B2n+1

by

ε(1; (π,x), (θ,y)) = ([π1, . . . , πn, θ1 + n, . . . , θn + n, 2n+ 1]; x,y, 1)

and

ε(τ ; (π,x), (θ,y)) = ([π1 + n, . . . , πn + n, θ1, . . . , θn, 2n+ 1]; x,y,−1)

where τ is the non-identity element in S2. Clearly ε is one-to-one, and it is
straightforward to prove that ε is a homomorphism. It is an equally straightfor-
ward deduction, using the Chen-Stanley criterion with k = 0, that ε(1; g1, g2)
and ε(τ ; g1, g2) are vertex derangements if g1 and g2 are. Thus if G is a subgroup
of vertex derangements in Bn, S2 oG is isomorphic via ε to a subgroup of vertex
derangements in B2n+1.

Theorem 10 Γn `0 B2n−1.

Proof. The group Γ1 is isomorphic to B1, which starts our induction. Using
Lemma 2 and the induction hypothesis gives us that Γn = S2 oSn−1 is isomorphic
to a subgroup of vertex derangements in B2(2n−1−1)+1 = B2n−1.
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Corollary 4 If G is a finite group of order 2n, then G is isomorphic to a
subgroup of symmetries of the (2n−1)-cube so that all of its non-trivial elements
are vertex derangements.

Proof. Any finite group is isomorphic to a subgroup of S|G|. Under the hy-
pothesis, G is isomorphic to a Sylow2- subgroup Γn of the symmetric group
S2n . Apply Theorem 10.

Finding free actions by specific 2-groups can be a challenge however. The
generalized quaternions

Qn = < α, β | α2n−1

= 1, α2n−2

= β2 = (αβ)2 >

of order 2n is predicted by the above Corollary to be isomorphic to a subgroup
of vertex derangements in B2n−1. The proof of the theorem however is not
helpful in finding the embedding. But by assigning

α 7→ ((1, 2, . . . , 2n−2)(2n−2 + 1, 2n−2 + 2, . . . , 2n−1);−1, 1, . . . , 1︸ ︷︷ ︸
2n−2−1

,−1, 1, . . . , 1︸ ︷︷ ︸
2n−2−1

)

and

β 7→ ((1, 2n−1)(2, 2n−1−1) . . . (2n−2, 2n−2+1);−1, 1, . . . , 1︸ ︷︷ ︸
2n−2−2

,−1, 1,−1, . . . ,−1︸ ︷︷ ︸
2n−2−2

, 1),

we can see that Qn is isomorphic to a subgroup of vertex derangments in B2n−1 .

Corollary 5 If G is a finite 2-group and k ≥ 0, then there exists n ≥ 0 such
that G is isomorphic to a group of symmetries on the n-cube in such a way that
it acts as derangements on the set of k′-faces for every k′ ≤ k.

Proof. By Corollary 4, we may assume G < Bm and G acts as a group of
derangements on the set of vertices. So, every non-identity g = (π; x) ∈ G
satisfies xσ = −1 for some cycle σ in π. Fix k ≥ 0 and suppose k′ ≤ k. The there
exists a sufficiently large t (with respect to k) such that h = g × g × · · · × g︸ ︷︷ ︸

t

=

(θ,y) satisfies the following: If I ⊆ {1, 2, . . . ,mt} is a k′-element subset, then
one of the cycles, σ′, of σ × σ × · · · × σ︸ ︷︷ ︸

t

(in θ) is disjoint from I. Furthermore,

yσ′ = xσ = −1. Hence, h ∈ Bmt is a derangement of the set of k′-faces.
We may now choose one t sufficiently large that the above argument will

apply to all g ∈ G. Thus, G is isomorphic, via a diagonal mapping, to a
subgroup of Bmt, acting as derangements on the set of k′-faces.
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