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Archimedes’ Quadrature of the Parabola

Problem: Measure the parabolic area.
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Archimedes’ Quadrature of the Parabola

Archimedes’ Solution: Locate point R on arc with maximum
vertical distance from PQ. (Turns out, the tangent line to the arc
at R is parallel to PQ.)
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(AQP) Parabolic (shaded) Area =
4

3
(4PQR).



Archimedes’ Squaring of the Parabola

Archimedes’ other solution: Let 4PQR ′ be the so-called
Archimedean Triangle, where PR ′ and QR ′ are respective tangents.
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(ASP) Parabolic (shaded) Area =
2

3
(4PQR ′).



Two Triangles Theorem
Calculus Problem. For the parabolic arc with respective tangent
lines pictured, compute the ratio of areas

4PQR

4P ′Q ′R ′ .
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Answer. (TTT)

4PQR

4P ′Q ′R ′ = 2.



Two Triangles Theorem

TTT is a consequence of ASP.

Define areas (XY ) and [XY ] as pictured.
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Then,

ASP =⇒ (XY ) =
2

3
((XY ) + [XY ])

=⇒ (XY ) = 2[XY ].



Two Triangles Theorem

TTT is a consequence of ASP.
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4PQR

4P ′Q ′R ′ =
(PQ)− (PR)− (QR)

[PQ]− [PR]− [QR]

=
2 ([PQ]− [PR]− [QR])

[PQ]− [PR]− [QR]

= 2.



Generalizing...

New Question:. What happens when the curve is no longer a
parabola?

Reasonable Restrictions? How about polynomial curves? Rational
curves? Analytic curves?

Definition. A curve C will be called analytic of order n at a point
R ∈ C if there is a coordinate system at R with the two respective
axes tangent and normal to C at R so that in a neighborhood of R,
C is the graph of an analytic function (power series)

f (x) = cnx
n + cn+1x

n+1 + · · · ,

where cn 6= 0. For our purposes, n will always be an even positive
integer.

Note. A point R on a curve C is of order 2 precisely when the
curvature of C is non-zero at R.



Generalized Archimedean Quadrature

Fix R ∈ C and pick points P,Q ∈ C on opposite sides of R and so
that PQ is parallel to the tangent line to C at R. Then, let P and
Q approach R along C.

GAQ. Assume C is an analytic plane curve, and R ∈ C is a point of
order 2n, n ≥ 1.
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Then,

lim
(PQ)

4PQR
=

4n

2n + 1
.



Proof of GAQ

Proof.

P = Ha, f HaLL Q = Hb, f HbLL

Ra b = Γ HaL

y = f HxL

lim
(PQ)

4PQR
= lim

a→0

2
(
f (a)(γ(a)− a)−

∫ γ(a)
a f (x) dx

)
f (a)(γ(a)− a)

,

Use algebra, L’Hospital’s Rule (several times), the Fundamental
Theorem of Calculus & the Inverse Function Theorem. . . to get

lim
(PQ)

4PQR
=

4n

2n + 1
.



Generalized Archimedean Squaring

Fix R ∈ C and pick points P,Q ∈ C on opposite sides of R and so
that PQ is parallel to the tangent line to C at R. Let R ′ be the
intersection of the tangents to C at the points P and Q,
respectively. Then, let P and Q approach R along C.

GAS. Assume C is an analytic plane curve, and R ∈ C is a point of
order 2n, n ≥ 1.
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Then,

lim
(PQ)

4PQR ′ =
2

2n + 1
.



Proof of GAS

Proof.

P = Ha, f HaLL Q = Hb, f HbLL

Ra b = Γ HaL

y = f HxL

R¢

lim
(PQ)

4PQR ′ = lim
(PQ)

4PQR
· 4PQR

4PQR ′

=
4n

2n + 1
· lim
a→0

f (a)(f ′(a)− f ′(γ(a)))

f ′(a)f ′(γ(a))(γ(a)− a)
,

Use algebra, L’Hospital’s Rule (several times), the Fundamental
Theorem of Calculus & the Inverse Function Theorem. . . to get

lim
(PQ)

4PQR ′ =
4n

2n + 1
· 1

2n
=

2

2n + 1
.



Recall Two Triangles Theorem
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TTT for Parabolas

4PQR

4P ′Q ′R ′ = 2.



Generalized Two Triangles Theorem–Parallel Case

Fix R ∈ C and pick points P,Q ∈ C on opposite sides of R and so
that PQ is parallel to the tangent line to C at R. Let P ′,Q ′,R ′ be
the respective intersection points of the pictured tangents to C.
Then, let P and Q approach R along C.

GTTT–Parallel. Assume C is an analytic plane curve, and R ∈ C
is a point of order 2n, n ≥ 1 and

←→
PQ ||

←→
P ′Q ′.
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Then,

lim
4PQR

4P ′Q ′R ′ =
2n

(2n − 1)2
.

Proof.
Similar to GAQ & GAS.



Generalized Two Triangles Theorem–Non-Parallel Case
Fix R ∈ C and pick points P,Q ∈ C on opposite sides of R. (No
parallel requirement.) Let P ′,Q ′,R ′ be the respective intersection
points of the pictured tangents to C. Then, let P and Q approach
R along C.

GTTT–Non-Parallel. Assume C is an analytic plane curve, and
R ∈ C is a point of order 2. (So curvature at R is not zero.) No

parallel assumption regarding
←→
PQ and

←→
P ′Q ′.
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Then,

lim
4PQR

4P ′Q ′R ′ = 2.



Proof of TTT–Non-Zero Curvature Case
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y = f HxL
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T

T ¢
P¢Q¢

4PQR

4P ′Q ′R ′ =
T

T ′ =

f ′(a)f ′(b)(bf (a)− af (b))(f ′(a)− f ′(b))

(f (a)f ′(b)− f ′(a)f (b) + f ′(a)f ′(b)(b − a))2



Proof of TTT–Non-Zero Curvature Case

T

T ′ =
f ′(a)f ′(b)(bf (a)− af (b))(f ′(a)− f ′(b))

(f (a)f ′(b)− f ′(a)f (b) + f ′(a)f ′(b)(b − a))2

Factorizations (Proved using series manipulations.)

1. f ′(a) = aϕ1(a) where lima→0 ϕ1(a) = 2c2.

2. f ′(a)− f ′(b) = (a− b)ϕ2(a, b) where lima,b→0 ϕ2(a, b) = 2c2.

3. bf (a)− af (b) = ab(a− b)ϕ3(a, b) where
lima,b→0 ϕ3(a, b) = c2.

4. f ′(a)f (b)− f (a)f ′(b) = ab(b − a)ϕ4(a, b) where
lima,b→0 ϕ4(a, b) = 2c22 .



Proof of TTT–Non-Zero Curvature Case

Using the factorizations. . .

lim
a,b→0

T

T ′ = lim
a,b→0

f ′(a)f ′(b)(bf (a)− af (b))(f ′(a)− f ′(b))

(f (a)f ′(b)− f ′(a)f (b) + f ′(a)f ′(b)(b − a))2

= lim
a,b→0

aϕ1(a)bϕ1(b)ab(a− b)ϕ3(a, b)(a− b)ϕ2(a, b)

(ab(b − a)ϕ4(a, b)− aϕ1(a)bϕ1(b)(b − a))2

= lim
a,b→0

ϕ1(a)ϕ1(b)ϕ3(a, b)ϕ2(a, b)

(ϕ4(a, b)− ϕ1(a)ϕ1(b))2

=
8c42(

2c22 − 4c22
)2

= 2.

End of Proof



New Direction–Triangle Functions

A triangle function is a real valued function T defined on triangles
in the plane so that T (41) = T (42) if 41

∼= 42.

Examples.

I T (4) = Area, or perimeter, enclosed by 4.

I T (4) = in-radius of 4.

I T (4) = circum-radius of 4. Note: lim T (4) = (radius of
osculating circle) = 1/curvature.

I T (4) = Length of the Euler line segment of 4.

I T (4) = Area, or perimeter, of Morley’s miracle equilateral
triangle in 4.



New Direction–Triangle Functions

Notation and conventions as above. Define. . .if the limits exist
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I If R ∈ C is an order 2
point,

L = lim
T (4PQR)

T (4P ′Q ′R ′)

I If R ∈ C has order 2n,
n ≥ 1,

L|| = lim
PQ||TRC

T (4PQR)

T (4P ′Q ′R ′)



Results of Computer Experiments–Conjectures

1. If T (4) = Perimeter(4), then L = 2 and L|| = 2n/(2n − 1).
(Same result as T (4) = Area(4).)

2. But if T (4) = c + τ(4), where c is a fixed non-zero number
and τ is either area or perimeter , then L = L|| = 1.

3. If T (4) = Circumradius(4), then L = 4 and
L|| = 4n2/(2n − 1). But if T (4) = c + Circumradius(4)
where c is a constant, then L = (4κc + 4)/(4κc + 1) where κ
is the curvature to C at R. On the other hand,
L|| = 4n2/(2n − 1) even if c 6= 0.

4. If T (4) = inradius(4), then L = 1 and L|| = 1/(2n − 1).

5. If T (4) is the cube root of the product of the three side
lengths of 4, then L = 2 and L|| = 2n/(2n− 1). (Same as for
perimeter and area.)



Thanks!
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Eureka?


