

Archimedean Quadrature Redux

Larry W. Cusick

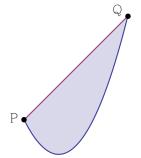
California State University, Fresno

November 4, 2013

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへの

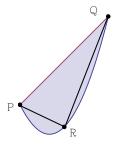
Archimedes' Quadrature of the Parabola

Problem: Measure the parabolic area.



Archimedes' Quadrature of the Parabola

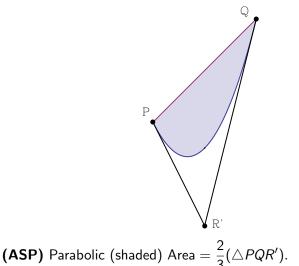
Archimedes' Solution: Locate point *R* on arc with maximum vertical distance from \overline{PQ} . (Turns out, the tangent line to the arc at *R* is parallel to \overline{PQ} .)



(AQP) Parabolic (shaded) Area = $\frac{4}{3}(\triangle PQR)$.

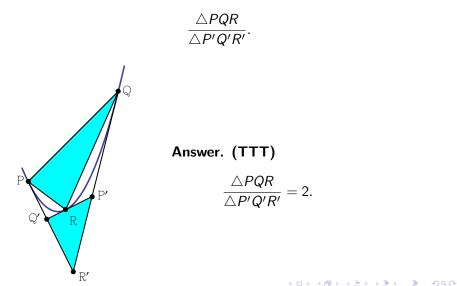
Archimedes' Squaring of the Parabola

Archimedes' other solution: Let $\triangle PQR'$ be the so-called Archimedean Triangle, where $\overline{PR'}$ and $\overline{QR'}$ are respective tangents.



Two Triangles Theorem

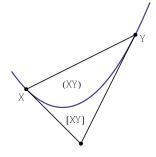
Calculus Problem. For the parabolic arc with respective tangent lines pictured, compute the ratio of areas



Two Triangles Theorem

TTT is a consequence of ASP.

Define areas (XY) and [XY] as pictured.



Then,

$$ASP \implies (XY) = \frac{2}{3}((XY) + [XY])$$
$$\implies (XY) = 2[XY].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Two Triangles Theorem

TTT is a consequence of ASP. R. R'

 $\frac{\triangle PQR}{\triangle P'Q'R'} = \frac{(PQ) - (PR) - (QR)}{[PQ] - [PR] - [QR]}$ $= \frac{2([PQ] - [PR] - [QR])}{[PQ] - [PR] - [QR]}$ = 2.

Generalizing...

New Question:. What happens when the curve is no longer a parabola?

Reasonable Restrictions? How about polynomial curves? Rational curves? Analytic curves?

Definition. A curve C will be called *analytic of order n* at a point $R \in C$ if there is a coordinate system at R with the two respective axes tangent and normal to C at R so that in a neighborhood of R, C is the graph of an analytic function (power series)

$$f(x) = c_n x^n + c_{n+1} x^{n+1} + \cdots,$$

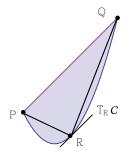
where $c_n \neq 0$. For our purposes, *n* will always be an even positive integer.

Note. A point *R* on a curve C is of order 2 precisely when the curvature of C is non-zero at *R*.

Generalized Archimedean Quadrature

Fix $R \in C$ and pick points $P, Q \in C$ on opposite sides of R and so that \overline{PQ} is parallel to the tangent line to C at R. Then, let P and Q approach R along C.

GAQ. Assume C is an analytic plane curve, and $R \in C$ is a point of order $2n, n \ge 1$.



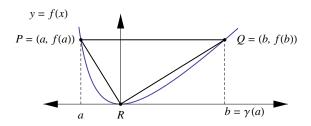
Then,

 $\lim \frac{(PQ)}{\wedge POR} = \frac{4n}{2n+1}.$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Proof of GAQ

Proof.



$$\lim \frac{(PQ)}{\triangle PQR} = \lim_{a \to 0} \frac{2\left(f(a)(\gamma(a) - a) - \int_a^{\gamma(a)} f(x) dx\right)}{f(a)(\gamma(a) - a)},$$

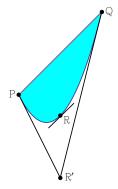
Use algebra, L'Hospital's Rule (several times), the Fundamental Theorem of Calculus & the Inverse Function Theorem... to get

$$\lim \frac{(PQ)}{\triangle PQR} = \frac{4n}{2n+1}.$$

Generalized Archimedean Squaring

Fix $R \in C$ and pick points $P, Q \in C$ on opposite sides of R and so that \overline{PQ} is parallel to the tangent line to C at R. Let R' be the intersection of the tangents to C at the points P and Q, respectively. Then, let P and Q approach R along C.

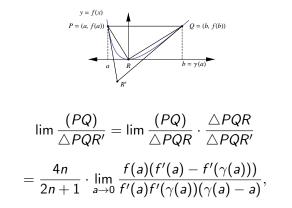
GAS. Assume C is an analytic plane curve, and $R \in C$ is a point of order $2n, n \ge 1$.



Then,

$$\lim \frac{(PQ)}{\triangle PQR'} = \frac{2}{2n+1}.$$

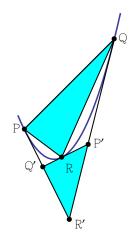
Proof of GAS



Use algebra, L'Hospital's Rule (several times), the Fundamental Theorem of Calculus & the Inverse Function Theorem... to get

$$\lim \frac{(PQ)}{\triangle PQR'} = \frac{4n}{2n+1} \cdot \frac{1}{2n} = \frac{2}{2n+1}.$$

Recall Two Triangles Theorem



TTT for Parabolas

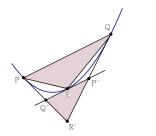
$$\frac{\triangle PQR}{\triangle P'Q'R'} = 2.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Generalized Two Triangles Theorem–Parallel Case

Fix $R \in C$ and pick points $P, Q \in C$ on opposite sides of R and so that \overline{PQ} is parallel to the tangent line to C at R. Let P', Q', R' be the respective intersection points of the pictured tangents to C. Then, let P and Q approach R along C.

GTTT–Parallel. Assume C is an analytic plane curve, and $R \in C$ is a point of order $2n, n \ge 1$ and $\overrightarrow{PQ} || \overrightarrow{P'Q'}$.



Then,

$$\lim \frac{\triangle PQR}{\triangle P'Q'R'} = \frac{2n}{(2n-1)^2}.$$

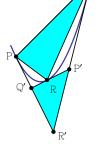
・ロット (日) (日) (日) (日) (日)

Proof. Similar to GAQ & GAS.

Generalized Two Triangles Theorem–Non-Parallel Case

Fix $R \in C$ and pick points $P, Q \in C$ on opposite sides of R. (No parallel requirement.) Let P', Q', R' be the respective intersection points of the pictured tangents to C. Then, let P and Q approach R along C.

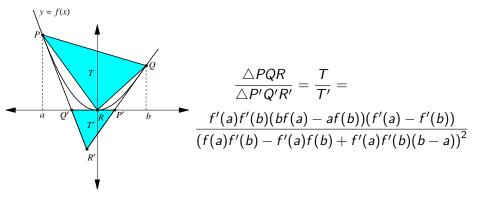
GTTT–Non-Parallel. Assume C is an analytic plane curve, and $R \in C$ is a point of order 2. (So curvature at R is not zero.) No parallel assumption regarding \overrightarrow{PQ} and $\overrightarrow{P'Q'}$.



$$\lim \frac{\triangle PQR}{\triangle P'Q'R'} = 2.$$

・ロット (日) (日) (日) (日) (日)

Proof of TTT-Non-Zero Curvature Case



Proof of TTT–Non-Zero Curvature Case

$$\frac{T}{T'} = \frac{f'(a)f'(b)(bf(a) - af(b))(f'(a) - f'(b))}{(f(a)f'(b) - f'(a)f(b) + f'(a)f'(b)(b - a))^2}$$

Factorizations (Proved using series manipulations.)

f'(a) = aφ₁(a) where lim_{a→0} φ₁(a) = 2c₂.
 f'(a) - f'(b) = (a - b)φ₂(a, b) where lim_{a,b→0} φ₂(a, b) = 2c₂.
 bf(a) - af(b) = ab(a - b)φ₃(a, b) where lim_{a,b→0} φ₃(a, b) = c₂.
 f'(a)f(b) - f(a)f'(b) = ab(b - a)φ₄(a, b) where

 $\lim_{a,b\to 0} \varphi_4(a,b) = 2c_2^2.$

Proof of TTT-Non-Zero Curvature Case

Using the factorizations...

$$\lim_{a,b\to 0} \frac{T}{T'} = \lim_{a,b\to 0} \frac{f'(a)f'(b)(bf(a) - af(b))(f'(a) - f'(b))}{(f(a)f'(b) - f'(a)f(b) + f'(a)f'(b)(b - a))^2}$$

$$= \lim_{a,b\to 0} \frac{a\varphi_1(a)b\varphi_1(b)ab(a - b)\varphi_3(a, b)(a - b)\varphi_2(a, b)}{(ab(b - a)\varphi_4(a, b) - a\varphi_1(a)b\varphi_1(b)(b - a))^2}$$

$$= \lim_{a,b\to 0} \frac{\varphi_1(a)\varphi_1(b)\varphi_3(a, b)\varphi_2(a, b)}{(\varphi_4(a, b) - \varphi_1(a)\varphi_1(b))^2}$$

$$= \frac{8c_2^4}{(2c_2^2 - 4c_2^2)^2}$$

$$= 2.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

End of Proof

New Direction–Triangle Functions

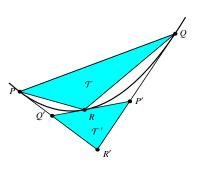
A triangle function is a real valued function \mathcal{T} defined on triangles in the plane so that $\mathcal{T}(\triangle_1) = \mathcal{T}(\triangle_2)$ if $\triangle_1 \cong \triangle_2$.

Examples.

- $\mathcal{T}(\triangle) =$ Area, or perimeter, enclosed by \triangle .
- $\mathcal{T}(\triangle) = \text{in-radius of } \triangle$.
- *T*(△) = circum-radius of △. Note: lim *T*(△) = (radius of osculating circle) = 1/curvature.
- $\mathcal{T}(\triangle) = \text{Length of the Euler line segment of } \triangle$.
- *T*(△) = Area, or perimeter, of Morley's miracle equilateral triangle in △.

New Direction–Triangle Functions

Notation and conventions as above. Define...if the limits exist



If R ∈ C is an order 2 point,

$$L = \lim \frac{\mathcal{T}(\triangle PQR)}{\mathcal{T}(\triangle P'Q'R')}$$

 If *R* ∈ C has order 2*n*, *n* ≥ 1,

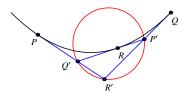
$$L_{||} = \lim_{\overline{PQ}||T_{\mathcal{R}}\mathcal{C}} \frac{\mathcal{T}(\triangle PQR)}{\mathcal{T}(\triangle P'Q'R')}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Results of Computer Experiments-Conjectures

- 1. If $\mathcal{T}(\triangle) = \text{Perimeter}(\triangle)$, then L = 2 and $L_{||} = 2n/(2n-1)$. (Same result as $\mathcal{T}(\triangle) = \text{Area}(\triangle)$.)
- 2. But if $\mathcal{T}(\triangle) = c + \tau(\triangle)$, where c is a fixed non-zero number and τ is either area or perimeter , then $L = L_{||} = 1$.
- 3. If $\mathcal{T}(\triangle) = \text{Circumradius}(\triangle)$, then L = 4 and $L_{||} = 4n^2/(2n-1)$. But if $\mathcal{T}(\triangle) = c + \text{Circumradius}(\triangle)$ where c is a constant, then $L = (4\kappa c + 4)/(4\kappa c + 1)$ where κ is the curvature to C at R. On the other hand, $L_{||} = 4n^2/(2n-1)$ even if $c \neq 0$.
- 4. If $\mathcal{T}(\triangle) = \text{inradius}(\triangle)$, then L = 1 and $L_{||} = 1/(2n-1)$.
- 5. If $\mathcal{T}(\triangle)$ is the cube root of the product of the three side lengths of \triangle , then L = 2 and $L_{||} = 2n/(2n-1)$. (Same as for perimeter and area.)

Thanks!



Eureka?