

Archimedean Quadrature Redux

Larry W. Cusick
California State University, Fresno

November 4, 2013

Archimedes' Quadrature of the Parabola

Problem: Measure the parabolic area.

Archimedes' Quadrature of the Parabola

Archimedes' Solution: Locate point R on arc with maximum vertical distance from $\overline{P Q}$. (Turns out, the tangent line to the arc at R is parallel to $\overline{P Q}$.)

(AQP) Parabolic (shaded) Area $=\frac{4}{3}(\triangle P Q R)$.

Archimedes' Squaring of the Parabola

Archimedes' other solution: Let $\triangle P Q R^{\prime}$ be the so-called Archimedean Triangle, where $\overline{P R^{\prime}}$ and $\overline{Q R^{\prime}}$ are respective tangents.

(ASP) Parabolic (shaded) Area $=\frac{2}{3}\left(\triangle P Q R^{\prime}\right)$.

Two Triangles Theorem

Calculus Problem. For the parabolic arc with respective tangent lines pictured, compute the ratio of areas

$$
\frac{\triangle P Q R}{\triangle P^{\prime} Q^{\prime} R^{\prime}} .
$$

Answer. (TTT)

$$
\frac{\triangle P Q R}{\triangle P^{\prime} Q^{\prime} R^{\prime}}=2
$$

Two Triangles Theorem

TTT is a consequence of ASP.

Define areas $(X Y)$ and $[X Y]$ as pictured.

Then,

$$
\begin{aligned}
\text { ASP } & \Longrightarrow(X Y)=\frac{2}{3}((X Y)+[X Y]) \\
& \Longrightarrow(X Y)=2[X Y] .
\end{aligned}
$$

Two Triangles Theorem

TTT is a consequence of ASP.

$$
\begin{aligned}
\frac{\triangle P Q R}{\triangle P^{\prime} Q^{\prime} R^{\prime}} & =\frac{(P Q)-(P R)-(Q R)}{[P Q]-[P R]-[Q R]} \\
& =\frac{2([P Q]-[P R]-[Q R])}{[P Q]-[P R]-[Q R]} \\
& =2
\end{aligned}
$$

Generalizing...

New Question:. What happens when the curve is no longer a parabola?

Reasonable Restrictions? How about polynomial curves? Rational curves? Analytic curves?

Definition. A curve \mathcal{C} will be called analytic of order n at a point $R \in \mathcal{C}$ if there is a coordinate system at R with the two respective axes tangent and normal to \mathcal{C} at R so that in a neighborhood of R, \mathcal{C} is the graph of an analytic function (power series)

$$
f(x)=c_{n} x^{n}+c_{n+1} x^{n+1}+\cdots,
$$

where $c_{n} \neq 0$. For our purposes, n will always be an even positive integer.

Note. A point R on a curve \mathcal{C} is of order 2 precisely when the curvature of \mathcal{C} is non-zero at R.

Generalized Archimedean Quadrature

Fix $R \in \mathcal{C}$ and pick points $P, Q \in \mathcal{C}$ on opposite sides of R and so that $\overline{P Q}$ is parallel to the tangent line to \mathcal{C} at R. Then, let P and Q approach R along \mathcal{C}.

GAQ. Assume \mathcal{C} is an analytic plane curve, and $R \in \mathcal{C}$ is a point of order $2 n, n \geq 1$.

Then,

$$
\lim \frac{(P Q)}{\triangle P Q R}=\frac{4 n}{2 n+1}
$$

Proof of GAQ

Proof.

$$
\lim \frac{(P Q)}{\triangle P Q R}=\lim _{a \rightarrow 0} \frac{2\left(f(a)(\gamma(a)-a)-\int_{a}^{\gamma(a)} f(x) d x\right)}{f(a)(\gamma(a)-a)}
$$

Use algebra, L'Hospital's Rule (several times), the Fundamental Theorem of Calculus \& the Inverse Function Theorem. . . to get

$$
\lim \frac{(P Q)}{\triangle P Q R}=\frac{4 n}{2 n+1}
$$

Generalized Archimedean Squaring

Fix $R \in \mathcal{C}$ and pick points $P, Q \in \mathcal{C}$ on opposite sides of R and so that $\overline{P Q}$ is parallel to the tangent line to \mathcal{C} at R. Let R^{\prime} be the intersection of the tangents to \mathcal{C} at the points P and Q, respectively. Then, let P and Q approach R along \mathcal{C}.

GAS. Assume \mathcal{C} is an analytic plane curve, and $R \in \mathcal{C}$ is a point of order $2 n, n \geq 1$.

Then,

$$
\lim \frac{(P Q)}{\triangle P Q R^{\prime}}=\frac{2}{2 n+1}
$$

Proof of GAS

Proof.

$$
\begin{aligned}
& \lim \frac{(P Q)}{\triangle P Q R^{\prime}}=\lim \frac{(P Q)}{\triangle P Q R} \cdot \frac{\triangle P Q R}{\triangle P Q R^{\prime}} \\
= & \frac{4 n}{2 n+1} \cdot \lim _{a \rightarrow 0} \frac{f(a)\left(f^{\prime}(a)-f^{\prime}(\gamma(a))\right)}{f^{\prime}(a) f^{\prime}(\gamma(a))(\gamma(a)-a)},
\end{aligned}
$$

Use algebra, L'Hospital's Rule (several times), the Fundamental Theorem of Calculus \& the Inverse Function Theorem. . . to get

$$
\lim \frac{(P Q)}{\triangle P Q R^{\prime}}=\frac{4 n}{2 n+1} \cdot \frac{1}{2 n}=\frac{2}{2 n+1}
$$

Recall Two Triangles Theorem

TTT for Parabolas

$$
\frac{\triangle P Q R}{\triangle P^{\prime} Q^{\prime} R^{\prime}}=2
$$

Generalized Two Triangles Theorem-Parallel Case

Fix $R \in \mathcal{C}$ and pick points $P, Q \in \mathcal{C}$ on opposite sides of R and so that $\overline{P Q}$ is parallel to the tangent line to \mathcal{C} at R. Let $P^{\prime}, Q^{\prime}, R^{\prime}$ be the respective intersection points of the pictured tangents to \mathcal{C}. Then, let P and Q approach R along \mathcal{C}.

GTTT-Parallel. Assume \mathcal{C} is an analytic plane curve, and $R \in \mathcal{C}$ is a point of order $2 n, n \geq 1$ and $\overleftrightarrow{P Q} \| \widehat{P^{\prime} Q^{\prime}}$.

Then,

$$
\lim \frac{\triangle P Q R}{\triangle P^{\prime} Q^{\prime} R^{\prime}}=\frac{2 n}{(2 n-1)^{2}}
$$

Proof.
Similar to GAQ \& GAS.

Generalized Two Triangles Theorem-Non-Parallel Case

Fix $R \in \mathcal{C}$ and pick points $P, Q \in \mathcal{C}$ on opposite sides of R. (No parallel requirement.) Let $P^{\prime}, Q^{\prime}, R^{\prime}$ be the respective intersection points of the pictured tangents to \mathcal{C}. Then, let P and Q approach R along \mathcal{C}.

GTTT-Non-Parallel. Assume \mathcal{C} is an analytic plane curve, and $R \in \mathcal{C}$ is a point of order 2. (So curvature at R is not zero.) No parallel assumption regarding $\overleftrightarrow{P Q}$ and $\overleftrightarrow{P^{\prime} Q^{\prime}}$.

Then,

$$
\lim \frac{\triangle P Q R}{\triangle P^{\prime} Q^{\prime} R^{\prime}}=2
$$

Proof of TTT-Non-Zero Curvature Case

$$
\begin{gathered}
\frac{\triangle P Q R}{\triangle P^{\prime} Q^{\prime} R^{\prime}}=\frac{T}{T^{\prime}}= \\
\frac{f^{\prime}(a) f^{\prime}(b)(b f(a)-a f(b))\left(f^{\prime}(a)-f^{\prime}(b)\right)}{\left(f(a) f^{\prime}(b)-f^{\prime}(a) f(b)+f^{\prime}(a) f^{\prime}(b)(b-a)\right)^{2}}
\end{gathered}
$$

Proof of TTT-Non-Zero Curvature Case

$$
\frac{T}{T^{\prime}}=\frac{f^{\prime}(a) f^{\prime}(b)(b f(a)-a f(b))\left(f^{\prime}(a)-f^{\prime}(b)\right)}{\left(f(a) f^{\prime}(b)-f^{\prime}(a) f(b)+f^{\prime}(a) f^{\prime}(b)(b-a)\right)^{2}}
$$

Factorizations (Proved using series manipulations.)

1. $f^{\prime}(a)=a \varphi_{1}(a)$ where $\lim _{a \rightarrow 0} \varphi_{1}(a)=2 c_{2}$.
2. $f^{\prime}(a)-f^{\prime}(b)=(a-b) \varphi_{2}(a, b)$ where $\lim _{a, b \rightarrow 0} \varphi_{2}(a, b)=2 c_{2}$.
3. $b f(a)-a f(b)=a b(a-b) \varphi_{3}(a, b)$ where $\lim _{a, b \rightarrow 0} \varphi_{3}(a, b)=c_{2}$.
4. $f^{\prime}(a) f(b)-f(a) f^{\prime}(b)=a b(b-a) \varphi_{4}(a, b)$ where $\lim _{a, b \rightarrow 0} \varphi_{4}(a, b)=2 c_{2}^{2}$.

Proof of TTT-Non-Zero Curvature Case

Using the factorizations...

$$
\begin{aligned}
\lim _{a, b \rightarrow 0} \frac{T}{T^{\prime}} & =\lim _{a, b \rightarrow 0} \frac{f^{\prime}(a) f^{\prime}(b)(b f(a)-a f(b))\left(f^{\prime}(a)-f^{\prime}(b)\right)}{\left(f(a) f^{\prime}(b)-f^{\prime}(a) f(b)+f^{\prime}(a) f^{\prime}(b)(b-a)\right)^{2}} \\
& =\lim _{a, b \rightarrow 0} \frac{a \varphi_{1}(a) b \varphi_{1}(b) a b(a-b) \varphi_{3}(a, b)(a-b) \varphi_{2}(a, b)}{\left(a b(b-a) \varphi_{4}(a, b)-a \varphi_{1}(a) b \varphi_{1}(b)(b-a)\right)^{2}} \\
& =\lim _{a, b \rightarrow 0} \frac{\varphi_{1}(a) \varphi_{1}(b) \varphi_{3}(a, b) \varphi_{2}(a, b)}{\left(\varphi_{4}(a, b)-\varphi_{1}(a) \varphi_{1}(b)\right)^{2}} \\
& =\frac{8 c_{2}^{4}}{\left(2 c_{2}^{2}-4 c_{2}^{2}\right)^{2}} \\
& =2 .
\end{aligned}
$$

End of Proof

New Direction-Triangle Functions

A triangle function is a real valued function \mathcal{T} defined on triangles in the plane so that $\mathcal{T}\left(\triangle_{1}\right)=\mathcal{T}\left(\triangle_{2}\right)$ if $\triangle_{1} \cong \triangle_{2}$.

Examples.

- $\mathcal{T}(\triangle)=$ Area, or perimeter, enclosed by \triangle.
- $\mathcal{T}(\triangle)=$ in-radius of \triangle.
- $\mathcal{T}(\triangle)=$ circum-radius of \triangle. Note: $\lim \mathcal{T}(\triangle)=$ (radius of osculating circle) $=1$ /curvature.
- $\mathcal{T}(\triangle)=$ Length of the Euler line segment of \triangle.
- $\mathcal{T}(\triangle)=$ Area, or perimeter, of Morley's miracle equilateral triangle in \triangle.

New Direction-Triangle Functions

Notation and conventions as above. Define. . .if the limits exist

- If $R \in \mathcal{C}$ is an order 2 point,

$$
L=\lim \frac{\mathcal{T}(\triangle P Q R)}{\mathcal{T}\left(\triangle P^{\prime} Q^{\prime} R^{\prime}\right)}
$$

- If $R \in \mathcal{C}$ has order $2 n$,

$$
n \geq 1
$$

$$
L_{\|}=\lim _{P Q \| T_{R} C} \frac{\mathcal{T}(\triangle P Q R)}{\mathcal{T}\left(\triangle P^{\prime} Q^{\prime} R^{\prime}\right)}
$$

Results of Computer Experiments-Conjectures

1. If $\mathcal{T}(\triangle)=\operatorname{Perimeter}(\triangle)$, then $L=2$ and $L_{\|}=2 n /(2 n-1)$. (Same result as $\mathcal{T}(\triangle)=$ Area (\triangle).)
2. But if $\mathcal{T}(\triangle)=c+\tau(\triangle)$, where c is a fixed non-zero number and τ is either area or perimeter, then $L=L_{\|}=1$.
3. If $\mathcal{T}(\triangle)=\operatorname{Circumradius}(\triangle)$, then $L=4$ and $L_{\|}=4 n^{2} /(2 n-1)$. But if $\mathcal{T}(\triangle)=c+\operatorname{Circumradius}(\triangle)$ where c is a constant, then $L=(4 \kappa c+4) /(4 \kappa c+1)$ where κ is the curvature to \mathcal{C} at R. On the other hand, $L_{\|}=4 n^{2} /(2 n-1)$ even if $c \neq 0$.
4. If $\mathcal{T}(\triangle)=\operatorname{inradius}(\triangle)$, then $L=1$ and $L_{\|}=1 /(2 n-1)$.
5. If $\mathcal{T}(\triangle)$ is the cube root of the product of the three side lengths of \triangle, then $L=2$ and $L_{\|}=2 n /(2 n-1)$. (Same as for perimeter and area.)

Thanks!

Eureka?

