Knot Quandles \& Quandle Knots

Larry W. Cusick

California State University, Fresno

October 13, 2012

Knots \& Labeling

What is a Knot?

Definition. A knot is a simple closed polygonal curve in \mathbf{R}^{3}.

Think of the knot as made up from a large (finite) number of straight-line segments. We will work with their diagrams: projections onto a plane with the strand crossings indicated-as pictured.

Links

Links are interlocking knots. We will use the term knots to include knots and links.

Reidemeister Moves

Working Definition. Two knots are equivalent if, and only if, one knot diagram can be gotten from the other by a finite number of Reidemeister moves.

Braid Representation of a Knot

A braid gives rise to a knot/link.

Theorem (Markov)
Every knot/link has a braid representation.

Knots/Links Wholesale

Start with a braid B. Link n copies of B with itself to create a larger braid. Use the larger braid to form a knot/link by connecting left ends to corresponding right ends.

Example Torus knots come this way.

Connect the ends to get. . .

Distinguishing Knots

Why are knots 8_{15} and 8_{21} not equivalent?

Ralph Fox and Knot Coloring

3-Coloring Rules for Knot Diagrams

1. Each strand is assigned a color (R, G, B).
2. Use all three colors.
3. If there are two colors at a crossing, all three colors must appear at the crossing.

Theorem
If a knot diagram can be 3-colored, then any equivalent diagram of the knot can be 3-colored.
Consequence. The trefoil knot is not equivalent to the unknot.

Generalized Coloring: Labeling Mod p

\mathbf{Z}_{p}-Labeling Rules for Knot Diagrams (p is a prime)

1. Each strand is labeled with an element from $\mathbf{Z}_{p}=\{0,1, \ldots, p-1\}$.
2. Use at least two of the elements of \mathbf{Z}_{p}.
3. If x labels the over-crossing and y and z label the under-crossings, then $z \equiv 2 x-y \bmod p$.

Figure 8 Knot Labeling

Figure 8 Solution

All equivalences $\bmod p$.

$$
\begin{aligned}
a & \equiv 4 a+b-4 c \\
b & \equiv 2 a-c \\
c & \equiv-a-2 b+4 c .
\end{aligned}
$$

Non-trivial solution when $p=5$, where a and c satisfy $a \neq c$, $5 a \equiv 5 c \bmod p$ and $b \equiv-3 a+4 c \bmod p$. (For instance, $(a, b, c) \equiv(0,4,1) \bmod 5$.

Figure 8 Knot Labeled

Theorem
The number of \mathbf{Z}_{p} labelings of a knot is an invariant of the equivalence class of the knot.

Torus Knots

A Torus knot is a knot that can be placed on an unknotted torus without self-intersections. All torus knots are gotten from iterating a braid B_{r}, q times. The resulting knot is $T(r, q)$.
Example. The torus knot $T(5,4)$ is obtained by iterating the braid B_{5}, four times.

\mathbf{Z}_{p}-Labeling Results by CSUF Students

Theorem
(J. Bryan) The $T(r, q)$ Torus Knot can be \mathbf{Z}_{p}-labeled if, and only if, either

1. $r \equiv 0 \bmod 2$ and $q \equiv 0 \bmod p$ or
2. $r \equiv 0 \bmod p$ and $q \equiv 0 \bmod 2$

Theorem
(M. Rodriguez, A. Tibebu, I. Perez) Let B the the braid
B :

Then, the knot determined by the iterated braid B^{n}

can be \mathbf{Z}_{p} labeled if, and only if, p divides $5 F_{n}$ if n is even and p divides L_{n} if n is odd, where F_{n} and L_{n} are the respective Fibonacci and Lucas numbers.

Knot Quandles

Knot Quandles

Conway \& Wraith
Knot quandles generalize \mathbf{Z}_{p} labelings. We start with a set K, to label the diagram, and two binary operations on K, \triangleleft and \triangleleft^{-1}.
The Two Labeling Rules are pictured below.

Compatibility Type I

The binary operations are designed so that the labeling is compatible with the (oriented) Reidemeister moves.

Thus, we need for all $a \in K, a \triangleleft a=a$.

This gives us $a \in K, a \triangleleft^{-1} a=a$.

Compatibility Type II

This gives us the identity for all $a, b \in K,(a \triangleleft b) \triangleleft^{-1} b=a$.

So, for all $a, b \in K,\left(a \triangleleft^{-1} b\right) \triangleleft b=a$.

Compatibility Type III

Giving us for all $a, b, c \in K,(a \triangleleft b) \triangleleft c=(a \triangleleft c) \triangleleft(b \triangleleft c)$

The inverse version: $a, b, c \in K$,

$$
\left(a \triangleleft^{-1} b\right) \triangleleft^{-1} c=\left(a \triangleleft^{-1} c\right) \triangleleft^{-1}\left(b \triangleleft^{-1} c\right)
$$

Quandle Axioms

David Joyce
It turns out that we need only four of the above formulas-the other two are consequences of the axioms.

Definiton A quandle ($K, \triangleleft, \triangleleft^{-1}$) is a set K with two binary operations \triangleleft and \triangleleft^{-1} that satisfy

1. $\forall a \in K$,

$$
a \triangleleft a=a
$$

2. $\forall a, b \in K$,

$$
\begin{aligned}
& 2.1(a \triangleleft b) \triangleleft^{-1} b=a \text { and } \\
& 2.2\left(a \triangleleft^{-1} b\right) \triangleleft b=a
\end{aligned}
$$

3. $\forall a, b, c \in K$,
$(a \triangleleft b) \triangleleft c=(a \triangleleft c) \triangleleft(b \triangleleft c)$

Example of Quandles- $\mathbf{Z}_{n, q}$

For any unit q in a commutative ring K, we can define a quandle structure on K, called K_{q}, by

$$
\text { 1. } a \triangleleft b=q a+(1-q) b \text { and }
$$

2. $a \triangleleft^{-1} b=q^{-1} a+\left(1-q^{-1}\right) b$.

If $K=\mathbf{Z}_{n}$, then we denote this quandle by $\mathbf{Z}_{n, q}$, where q is a unit in \mathbf{Z}_{n}. The classical \mathbf{Z}_{n}-labeling of a knot corresponds to the quandle $\mathbf{Z}_{n,-1}=\mathbf{Z}_{n, n-1}$.

Table for $\mathbf{Z}_{4,3}$:

\triangleleft	0	1	2	3
0	0	2	0	2
1	3	1	3	1
2	2	0	2	0
3	1	3	1	3

Example of Quandles-Group Conjugation

Example 2. For a group G, and integer q, we can define a quandle structure on G by

1. $a \triangleleft b=b^{q} a b^{-q}$
2. $a \triangleleft^{-1} b=b^{-q} a b^{q}$

For example, the dihedral group D_{3} has a presentation

$$
D_{3}=<a, b \mid a^{3}=b^{2}=1, a b=b a^{2}>=\left\{1, a, a^{2}, b, a b, a^{2} b\right\} .
$$

From this, we can construct the group quandle table for $q=1$,

$$
x \triangleleft y=y x y^{-1}
$$

\triangleleft	1	a	a^{2}	b	$a b$	$a^{2} b$
1	1	1	1	1	1	1
a	a	a	a	a^{2}	a^{2}	a^{2}
a^{2}	a^{2}	a^{2}	a^{2}	a	a	a
b	b	$a^{2} b$	$a b$	b	$a^{2} b$	$a b$
$a b$	$a b$	b	$a^{2} b$	$a^{2} b$	$a b$	b
$a^{2} b$	$a^{2} b$	$a b$	b	$a b$	b	$a^{2} b$

Labeling Knots with Quandles

Definition. A Labeling of a diagram of a knot X by a quandle K was a labeling of the strands in the diagram with at least two elements from K so that the two labeling rules are satisified.

Trefoil Example

Example. The trefoil knot braid representation:

This gives us two equations:

$$
\begin{aligned}
& a=b \triangleleft(a \triangleleft b) \\
& b=(a \triangleleft b) \triangleleft(b \triangleleft(a \triangleleft(b)) .
\end{aligned}
$$

In the case that $K=\mathbf{Z}_{n, q}$, these equations are equivalent to a single equation

$$
\left(q^{2}-q+1\right) a \equiv\left(q^{2}-q+1\right) b \bmod n .
$$

Thus, the trefoill knot has a $\mathbf{Z}_{n, q}$ labeling if, and only if, $\operatorname{gcd}\left(q^{2}-q+1, n\right) \neq 1$. (Like $\left.\mathbf{Z}_{7,3}.\right)$

Trefoil Example Continued

$$
\begin{aligned}
& a=b \triangleleft(a \triangleleft b) \\
& b=(a \triangleleft b) \triangleleft(b \triangleleft(a \triangleleft(b))
\end{aligned}
$$

In the case that K is a group quandle G with $a \triangleleft b=b^{q} a b^{-q}$ for some $q \in \mathbf{Z}$, the two equations become equations in a group,

$$
\begin{aligned}
& a=b^{q} a b a^{-1} b^{-q} \\
& b=b^{q} a b a b^{-1} a^{-1} b^{-q}
\end{aligned}
$$

This is equivalent to the single group equation $a b a=b a b$. This has a solution in the quandle of transpositions
$K=\{(12),(23),(13)\} \subset S_{3}$ with $q=1$, where $a=(12)$ and $b=(23)$.

Back to $8_{15} \& 8_{21}$

The knots 8_{15} and 8_{21} are not equivalent because 8_{15} can be labeled by the quandle $\mathbf{Z}_{10,3}$ but not $\mathbf{Z}_{10,9}$, whereas 821 can be labeled by the quandle $\mathbf{Z}_{10,9}$ but not $\mathbf{Z}_{10,3}$.

All knots with 12 or fewer crossings (nearly 3000 knots) can be distinguished using only 20 quandles.

Knot Quandle Questions

1. Extend Bryan's result to the quandle $\mathbf{Z}_{n, q}$ for torus knots.
2. Extend Rodriguez, et al's result to the quandle $\mathbf{Z}_{n, q}$ for a simple iterated braid knot.
3. Do the above for more complicated braid knots.
4. Do the above for group quandles, $a \triangleleft b=b^{q} a b^{-1 q}$ for small finite groups (like transpostion quandles).
5. J. Bryan proved a connected sum of knots can be labeled by \mathbf{Z}_{n} if, and only if, one of its summands can be labeled. Is this true for $\mathbf{Z}_{n, q}$ quandles? What about more general quandles?

Quandle Knots

Quandle Knots

Definition. A knot X supports a quandle K if X can be labeled by K.

Question. Given a quandle K, which knots X support K ?
More Reasonable Question. Given a quandle K and a simple braid B, which iterated braid knots B^{n} support K ? Start with $K=\mathbf{Z}_{n, q}$.

Quandle Knot Example

Among the 35 knots of 8 or fewer crossings, 5 support the quandles $\mathbf{Z}_{7,2}$ and $\mathbf{Z}_{7,4}$:

Among these same 35 knots, none support the quandle $\mathbf{Z}_{4,3}$. However, this quandle is supported by the Torus link $T(3,3)$, as well as by the links $B^{3 k}$ where B is

$$
B:
$$

Knot-Equivalent Quandles

Experimental evidence suggests the two quandles $\mathbf{Z}_{7,2}$ and $\mathbf{Z}_{7,4}$ are supported by the same knots.

Definition. Quandles K_{1} and K_{2} are called knot-equivalent if they are supported by the same knots.

Questions.

- Are $\mathbf{Z}_{7,2}$ and $\mathbf{Z}_{7,4}$ knot-equivalent?
- Find other knot-equivalent pairs.
- Is there better terminology than "knot-equivalent?"
- Can it be proved that the quandle $\mathbf{Z}_{4,3}$ is supported only by links, not knots?

Isomorphic Quandles?

Example. The quandles $\mathbf{Z}_{7,4}$ and $\mathbf{Z}_{7,6}$ have quandle tables whose column cycle-structure are the same. Are they isomorphic?

Answer. No. They are distinguished by their quandle knots: $6_{1}, 6_{3}, 7_{5}$ in the case of $\mathbf{Z}_{7,4}$ and $5_{2}, 7_{1}, 7_{7}, 8_{5}$ in the case of $\mathbf{Z}_{7,6}$.

Quandle Theory

What would a Quandle Theory look like?

- Classify quandles into families?
- Structure of quandle tables?
- How to prove two quandles are not isomorphic?
- Quotient quandles by sub-quandles?
- What group theory ideas transfer to quandles?

Thanks

