Knot Quandles & Quandle Knots

Larry W. Cusick

California State University, Fresno

October 13, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Knots & Labeling

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

What is a Knot?

Definition. A *knot* is a simple closed polygonal curve in \mathbf{R}^3 .

Think of the knot as made up from a large (finite) number of straight-line segments. We will work with their *diagrams*: projections onto a plane with the strand crossings indicated—as pictured.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Links

Links are interlocking knots. We will use the term knots to include knots and links.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Reidemeister Moves

Working Definition. Two knots are equivalent if, and only if, one knot diagram can be gotten from the other by a finite number of Reidemeister moves.

Braid Representation of a Knot

A braid gives rise to a knot/link.

(日)、

э

Theorem (Markov)

Every knot/link has a braid representation.

Knots/Links Wholesale

Start with a braid B. Link n copies of B with itself to create a larger braid. Use the larger braid to form a knot/link by connecting left ends to corresponding right ends.

Example Torus knots come this way.

Connect the ends to get...

Distinguishing Knots

<ロト <回ト < 注ト < 注ト

э

Why are knots 8_{15} and 8_{21} not equivalent?

Ralph Fox and Knot Coloring

3-Coloring Rules for Knot Diagrams

- 1. Each strand is assigned a color (R,G, B).
- 2. Use all three colors.
- 3. If there are two colors at a crossing, all three colors must appear at the crossing.

Theorem

If a knot diagram can be 3-colored, then any equivalent diagram of the knot can be 3-colored.

Consequence. The trefoil knot is not equivalent to the unknot.

Generalized Coloring: Labeling Mod p

 Z_p -Labeling Rules for Knot Diagrams (p is a prime)

- 1. Each strand is labeled with an element from $\mathbf{Z}_{p} = \{0, 1, \dots, p-1\}.$
- 2. Use at least two of the elements of \mathbf{Z}_{p} .
- 3. If x labels the over-crossing and y and z label the under-crossings, then $z \equiv 2x y \mod p$.

Figure 8 Knot Labeling

Figure 8 Solution

All equivalences mod p.

$$a \equiv 4a+b-4c$$

$$b \equiv 2a-c$$

$$c \equiv -a-2b+4c.$$

Non-trivial solution when p = 5, where a and c satisfy $a \neq c$, $5a \equiv 5c \mod p$ and $b \equiv -3a + 4c \mod p$. (For instance, $(a, b, c) \equiv (0, 4, 1) \mod 5$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Figure 8 Knot Labeled

Theorem

The number of \mathbf{Z}_p labelings of a knot is an invariant of the equivalence class of the knot.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Torus Knots

A Torus knot is a knot that can be placed on an unknotted torus without self-intersections. All torus knots are gotten from iterating a braid B_r , q times. The resulting knot is T(r, q).

Example. The torus knot T(5, 4) is obtained by iterating the braid B_5 , four times.

Z_p-Labeling Results by CSUF Students

Theorem

(J. Bryan) The T(r, q) Torus Knot can be \mathbf{Z}_p -labeled if, and only if, either

1. $r \equiv 0 \mod 2$ and $q \equiv 0 \mod p$ or

2.
$$r \equiv 0 \mod p$$
 and $q \equiv 0 \mod 2$

Theorem (M. Rodriguez, A. Tibebu, I. Perez) Let B the the braid B:

Then, the knot determined by the iterated braid B^n

can be \mathbf{Z}_p labeled if, and only if, p divides $5F_n$ if n is even and p divides L_n if n is odd, where F_n and L_n are the respective Fibonacci and Lucas numbers.

Knot Quandles

<□ > < @ > < E > < E > E のQ @

Knot Quandles

Conway & Wraith

Knot quandles generalize Z_p labelings. We start with a set K, to label the diagram, and two binary operations on K, \triangleleft and \triangleleft^{-1} . The *Two Labeling Rules* are pictured below.

Compatibility Type I

The binary operations are designed so that the labeling is compatible with the (oriented) Reidemeister moves.

$$a \longrightarrow a \triangleleft a \equiv a \longrightarrow a$$

Thus, we need for all $a \in K$, $a \triangleleft a = a$.

$$a \xrightarrow{\qquad \qquad } a \triangleleft^{-1} a \equiv a \xrightarrow{\qquad \qquad } a$$

This gives us $a \in K$, $a \triangleleft^{-1} a = a$.

Compatibility Type II

This gives us the identity for all $a, b \in K$, $(a \triangleleft b) \triangleleft^{-1} b = a$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

So, for all $a, b \in K$, $(a \triangleleft^{-1} b) \triangleleft b = a$.

Compatibility Type III

The inverse version: $a, b, c \in K$, $(a \triangleleft^{-1} b) \triangleleft^{-1} c = (a \triangleleft^{-1} c) \triangleleft^{-1} (b \triangleleft^{-1} c)$

Quandle Axioms

David Joyce

It turns out that we need only four of the above formulas-the other two are consequences of the axioms.

Definiton A *quandle* $(K, \triangleleft, \triangleleft^{-1})$ is a set K with two binary operations \triangleleft and \triangleleft^{-1} that satisfy

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1.
$$\forall a \in K$$
,
 $a \triangleleft a = a$
2. $\forall a, b \in K$,
2.1 $(a \triangleleft b) \triangleleft^{-1} b = a$ and
2.2 $(a \triangleleft^{-1} b) \triangleleft b = a$
3. $\forall a, b, c \in K$,
 $(a \triangleleft b) \triangleleft c = (a \triangleleft c) \triangleleft (b \triangleleft c)$

Example of Quandles– $\mathbf{Z}_{n,q}$

For any unit q in a commutative ring K, we can define a quandle structure on K, called K_q , by

1.
$$a \triangleleft b = qa + (1-q)b$$
 and

2.
$$a \triangleleft^{-1} b = q^{-1}a + (1 - q^{-1})b$$
.

If $K = Z_n$, then we denote this quandle by $Z_{n,q}$, where q is a unit in Z_n . The classical Z_n -labeling of a knot corresponds to the quandle $Z_{n,-1} = Z_{n,n-1}$.

Table for $\mathbf{Z}_{4,3}$:

Example of Quandles-Group Conjugation

Example 2. For a group G, and integer q, we can define a quandle structure on G by

For example, the dihedral group D_3 has a presentation

$$D_3 = = \{1, a, a^2, b, ab, a^2b\}.$$

From this, we can construct the group quandle table for q = 1,

$$x \triangleleft y = yxy^{-1}.$$

\triangleleft	1	а	a ²	Ь	ab	a²b		
1	1	1	1	1	1	1		
а	а	а	а	a ²	a ²	a ²		
a^2	a ²	a ²	a ²	а	а	а		
b	b	a²b	ab	b	a²b	ab		
ab	ab	b	a²b	a²b	ab	b		
a² b	a²b	ab	b	ab	b	a²b		
					< □	▶ < (□) ▶	- 34	500

Definition. A Labeling of a diagram of a knot X by a quandle K was a labeling of the strands in the diagram with at least two elements from K so that the two labeling rules are satisified.

Trefoil Example

Example. The trefoil knot braid representation:

This gives us two equations:

$$a = b \triangleleft (a \triangleleft b)$$

$$b = (a \triangleleft b) \triangleleft (b \triangleleft (a \triangleleft (b)).$$

In the case that $K = Z_{n,q}$, these equations are equivalent to a single equation

$$(q^2-q+1)a\equiv (q^2-q+1)b \mod n.$$

Thus, the trefoill knot has a $Z_{n,q}$ labeling if, and only if, gcd $(q^2 - q + 1, n) \neq 1$. (Like $Z_{7,3}$.)

Trefoil Example Continued

$$a = b \triangleleft (a \triangleleft b)$$

$$b = (a \triangleleft b) \triangleleft (b \triangleleft (a \triangleleft (b)).$$

In the case that K is a group quandle G with $a \triangleleft b = b^q a b^{-q}$ for some $q \in \mathbf{Z}$, the two equations become equations in a group,

$$a = b^q a b a^{-1} b^{-q}$$

$$b = b^q a b a b^{-1} a^{-1} b^{-q}$$

This is equivalent to the single group equation aba = bab. This has a solution in the quandle of transpositions $\mathcal{K} = \{(12), (23), (13)\} \subset S_3$ with q = 1, where a = (12) and b = (23).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Back to 815 & 821

The knots 8_{15} and 8_{21} are not equivalent because 8_{15} can be labeled by the quandle $Z_{10,3}$ but not $Z_{10,9}$, whereas 8_{21} can be labeled by the quandle $Z_{10,9}$ but not $Z_{10,3}$.

All knots with 12 or fewer crossings (nearly 3000 knots) can be distinguished using only 20 quandles.

Knot Quandle Questions

- 1. Extend Bryan's result to the quandle $Z_{n,q}$ for torus knots.
- 2. Extend Rodriguez, et al's result to the quandle $Z_{n,q}$ for a simple iterated braid knot.
- 3. Do the above for more complicated braid knots.
- 4. Do the above for group quandles, $a \triangleleft b = b^q a b^{-1q}$ for small finite groups (like transpostion quandles).
- 5. J. Bryan proved a connected sum of knots can be labeled by Z_n if, and only if, one of its summands can be labeled. Is this true for $Z_{n,q}$ quandles? What about more general quandles?

Quandle Knots

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Definition. A knot X supports a quandle K if X can be labeled by K.

Question. Given a quandle K, which knots X support K?

More Reasonable Question. Given a quandle K and a simple braid B, which iterated braid knots B^n support K? Start with $K = \mathbf{Z}_{n,q}$.

・ロト・日本・モート モー うへぐ

Quandle Knot Example

Among the 35 knots of 8 or fewer crossings, 5 support the quandles $Z_{7,2}$ and $Z_{7,4}$:

Among these same 35 knots, none support the quandle $Z_{4,3}$. However, this quandle *is* supported by the Torus link T(3,3), as well as by the links B^{3k} where B is

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Knot-Equivalent Quandles

Experimental evidence suggests the two quandles ${\sf Z}_{7,2}$ and ${\sf Z}_{7,4}$ are supported by the same knots.

Definition. Quandles K_1 and K_2 are called *knot-equivalent* if they are supported by the same knots.

Questions.

- ► Are **Z**_{7,2} and **Z**_{7,4} knot-equivalent?
- Find other knot-equivalent pairs.
- Is there better terminology than "knot-equivalent?"
- Can it be proved that the quandle Z_{4,3} is supported only by links, not knots?

Isomorphic Quandles?

Example. The quandles $Z_{7,4}$ and $Z_{7,6}$ have quandle tables whose column cycle-structure are the same. Are they isomorphic?

Answer. No. They are distinguished by their quandle knots: $6_1, 6_3, 7_5$ in the case of $Z_{7,4}$ and $5_2, 7_1, 7_7, 8_5$ in the case of $Z_{7,6}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

What would a Quandle Theory look like?

- Classify quandles into families?
- Structure of quandle tables?
- How to prove two quandles are not isomorphic?
- Quotient quandles by sub-quandles?
- What group theory ideas transfer to quandles?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thanks