MATH 141

MIDTERM EXAM I ANSWERS

October 12, 2001

1. ($\mathbf{1 0} \mathrm{pts}$) Find all x such that:
(a) $\left|\frac{x+5}{-3}\right| \geq 6$

Either $\frac{x+5}{-3} \geq 6$, or $\frac{x+5}{-3} \leq-6$. The first inequality simplifies as follows:

$$
\frac{x+5}{-3} \geq 6 \Longrightarrow x+5 \leq-18 \Longrightarrow x \leq-23
$$

The second inequality simplifies as follows:

$$
\frac{x+5}{-3} \leq-6 \Longrightarrow x+5 \geq 18 \Longrightarrow x \geq 13
$$

Thus $x \in(-\infty,-23] \cup[13, \infty)$.
(b) $|10 x-4|=9$

Either $10 x-4=9$, or $-(10 x-4)=9$. The first case gives $x=\frac{13}{10}$, and the second case gives $x=-\frac{1}{2}$.
2. (12 pts) Given $P(-1,2)$ and $Q(3,5)$, find the following.
(a) The distance $|P Q|$.

The distance formula says that $D=\sqrt{\left(y_{2}-y_{1}\right)^{2}+\left(x_{2}-x_{1}\right)^{2}}$. Applying this here, we get

$$
D=\sqrt{(5-2)^{2}+(3-(-1))^{2}}=\sqrt{9+16}=\sqrt{25}=5 .
$$

(b) The slope of the line through P and Q.

The slope is $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$. Applying this here, we get

$$
\frac{5-2}{3-(-1)}=\frac{3}{4}
$$

(c) The line through P parallel to the x-axis.

A line parallel to the x-axis has slope 0 . The y-coordinate of P is 2 , so the horizontal line through this point is

$$
y=2
$$

(d) The line through Q perpendicular to the line $2 x+6 y+3=0$.

Let's put the line $2 x+6 y+3=0$ into slope-intercept form:

$$
6 y=-2 x-3 \Longrightarrow y=-\frac{2}{6} x-\frac{3}{6} \Longrightarrow y=-\frac{1}{3} x-\frac{1}{2} .
$$

Thus this line has slope $-\frac{1}{3}$. Any line perpendicular to this line has slope 3 (take the negative reciprocal of $-1 / 3$).

So we need to find the line through $Q(3,5)$ which has slope 3 :

$$
\frac{y-5}{x-3}=3 \Longrightarrow y-5=3(x-3) \Longrightarrow y=3 x-4
$$

This is the line we want.
3. (4 pts) Do the following.
(a) Convert the angle of $\frac{-8 \pi}{5}$ radians to degrees.
$\frac{-8 \pi}{5}$ radians is $\frac{-8 * 180}{5}$ degrees. This simplifies to -288 degrees.
(b) Convert the angle of 150 degrees to radians.

150 degrees $=150 \frac{\pi}{180}$ radians. This simplifies to $\frac{5 \pi}{6}$ radians.
4. (10 pts) Find the exact values.
(a) $\sin \left(\frac{4 \pi}{8}\right)$

$$
=\sin \left(\frac{\pi}{2}\right)=1
$$

(b) $\tan \left(\frac{-\pi}{3}\right)$

$$
=\frac{\sin (-\pi / 3)}{\cos (-\pi / 3)}=\frac{-\frac{\sqrt{3}}{2}}{\frac{1}{2}}=-\sqrt{3} .
$$

(c) $\cos ^{2}\left(\arctan \left(\frac{1}{8}\right)\right)+\sin ^{2}\left(\arctan \left(\frac{1}{8}\right)\right)$
$\cos ^{2} \theta+\sin ^{2} \theta=1$ for any angle θ.
(d) $2 \sin \left(\frac{\pi}{12}\right) \cos \left(\frac{\pi}{12}\right)$

For any $\theta, 2 \sin \theta \cos \theta=\sin (2 \theta)$. Thus

$$
2 \sin (\pi / 12) \cos (\pi / 12)=\sin \left(2 \frac{\pi}{12}\right)=\sin \left(\frac{\pi}{6}\right)=\frac{1}{2} .
$$

(e) $\arccos \left(\cos \left(\frac{\pi}{9}\right)\right)$

By definition, $\arccos x$ is the angle in $[0, \pi]$ whose cosine is x. Thus $\arccos \left(\cos \left(\frac{\pi}{9}\right)\right)$ is the angle in $[0, \pi]$ whose cosine is $\cos \left(\frac{\pi}{9}\right)$. This angle is $\frac{\pi}{9}$.

Aside: In the above example, the arccos and cos cancel. However, this does not always happen. Note for example that $\arccos \left(\cos \left(-\frac{\pi}{2}\right)\right)$ is the angle in $[0, \pi]$ whose cosine is $\cos \left(-\frac{\pi}{2}\right)=0$. Because $-\frac{\pi}{2}$ doesn't live in $[0, \pi]$, we need to look for another angle whose cosine is 0 , namely $\frac{\pi}{2}$. So $\arccos \left(\cos \left(-\frac{\pi}{2}\right)\right)=\frac{\pi}{2}$.
5. (9 pts) Find functions whose graphs are obtained from the graph of $f(x)=x^{3}+1$ by:
(a) Shifting 6 units to the right.

$$
y=(x-6)^{3}+1
$$

(b) Vertically stretching by a factor of 10 .

$$
y=10\left(x^{3}+1\right)
$$

(c) Reflecting about the y-axis and then shifting 4 units up.

First reflect about the y-axis:

$$
y=(-x)^{3}+1=-x^{3}+1
$$

Now shift the above result up by 4 :

$$
y=-x^{3}+1+4=-x^{3}+5 .
$$

6. (10 pts) Do the following.
(a) Let $f(x)=\ln x$ and $g(x)=1-x^{2}$. Find $f \circ g$ and $g \circ f$ and their domains.

$$
f \circ g(x)=f(g(x))=f\left(1-x^{2}\right)=\ln \left(1-x^{2}\right) .
$$

To find the domain of the above function, note that \ln must take a positive input. So we need

$$
1-x^{2}>0
$$

or

$$
(1-x)(1+x)>0 .
$$

The roots are $x=1$, and $x=-1$, so there are three intervals to consider: $(-\infty,-1)$, $(-1,1)$, and $(1, \infty)$. We just have to plug in a test number from each interval to see which intervals to include in the solution. If we plug in $x=2$, we get a negative number. The same happens for $x=-2$. Thus we can discard the intervals $(-\infty,-1)$ and $(1, \infty)$ from consideration. Plugging in the test number $x=0$, we get 1 , which is positive. Hence the solution set of the inequality is the open interval $x \in(-1,1)$. This is the domain of $f \circ g$. (Equivalently, $-1<x<1$.)

Now we solve $g \circ f$:

$$
g \circ f(x)=g(f(x))=g(\ln x)=1-(\ln x)^{2} .
$$

In order to plug in a value for x here, it must be greater than zero, so the domain is $x \in(0, \infty)$, i.e. all $x>0$.
(b) Find f and g such that $f \circ g=\tan (\sqrt[3]{x})$.

There are lots of possible solutions here. The most natural one is $g(x)=\sqrt[3]{x}$ and $f(x)=\tan x$. Then

$$
f \circ g(x)=f(g(x))=f(\sqrt[3]{x})=\tan (\sqrt[3]{x})
$$

Another possibility is to take $f(x)=\tan (\sqrt[3]{x})$ and $g(x)=x$. Or even $f(x)=x$ and $g(x)=\tan (\sqrt[3]{x})$. (Nobody did this on the test though!)
7. (10 pts) Find the inverse function for $f(x)=\frac{x+1}{2 x+5}$.

Let $y=f^{-1}(x)$. Then $f(y)=x$, i.e.

$$
\frac{y+1}{2 y+5}=x
$$

We need to solve for y :

$$
y+1=x(2 y+5)=2 x y+5 x
$$

Putting all the y terms on the left, we get:

$$
y-2 x y=5 x-1
$$

Now factor y out of the left:

$$
y(1-2 x)=5 x-1
$$

Dividing, we get

$$
f^{-1}(x)=y=\frac{5 x-1}{1-2 x} .
$$

8. (10 pts) Solve the equations given below.
(a) $5^{x}+5^{x+1}=10$
$5^{x}+5^{x} 5=10$
$5^{x}(1+5)=10$
$5^{x}=\frac{10}{6}=\frac{5}{3}$
$x=\log _{5}\left(\frac{5}{3}\right)$.
(b) $\ln \left(x^{2}\right)-9=\ln x$
$\ln \left(x^{2}\right)-\ln x=9$
$\ln \frac{x^{2}}{x}=9$
$\ln x=9$
$x=e^{9}$.
9. (10 pts) A ladybug is crawling on the y-axis. If her position at time t is given by $y=2 t^{2}+1$, find her average velocity between $t=1$ and $t=3$ seconds.

Average velocity $=$ Average rate of change of position $=\frac{p(3)-p(1)}{3-1}$ $=\frac{\left(2(3)^{2}+1\right)-\left(2(1)^{2}+1\right)}{2}=\frac{16}{2}=8$.
10. (15 pts) Evaluate each of the following limits. For infinite limits, specify ∞ or $-\infty$.
(a) $\lim _{x \rightarrow 3} \frac{x^{2}+1}{(x+2)(x+6)}$

$$
=\frac{10}{(5)(9)}=\frac{2}{9} .
$$

(b) $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}=\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}\left(\frac{\sqrt{1+x}+\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right)$

$$
\begin{gathered}
=\lim _{x \rightarrow 0} \frac{(1+x)-(1-x)}{x(\sqrt{1+x}+\sqrt{1-x})}=\lim _{x \rightarrow 0} \frac{2 x}{x(\sqrt{1+x}+\sqrt{1-x})} \\
=\lim _{x \rightarrow 0} \frac{2}{\sqrt{1+x}+\sqrt{1-x}}=\frac{2}{1+1}=1 .
\end{gathered}
$$

(c) $\lim _{x \rightarrow 0}|x| \cos \left(\frac{\pi}{x}\right)$

We know that $-1 \leq \cos \left(\frac{\pi}{x}\right) \leq 1$. We can multiply this through by $|x|$ without reversing inequalities since $|x| \geq 0$:

$$
-|x| \leq|x| \cos \left(\frac{\pi}{x}\right) \leq|x|
$$

The function on the left and the function on the right both go to 0 as $x \rightarrow 0$. Therefore by the squeeze theorem,

$$
\lim _{x \rightarrow 0}|x| \cos (\pi / x)=0
$$

(d) $\lim _{x \rightarrow 5^{-}} \frac{4}{x-5}$ When $x<5$ and x is very close to 5 , this expression looks like

$$
\frac{4}{\text { small negative }},
$$

so in the limit, we get $-\infty$.
(e) $\lim _{x \rightarrow 7} \frac{\frac{1}{x}-\frac{1}{7}}{x-7}=\lim _{x \rightarrow 7} \frac{\frac{7}{7 x}-\frac{x}{7 x}}{x-7}=\lim _{x \rightarrow 7} \frac{7-x}{7 x} \frac{1}{x-7}=\lim _{x \rightarrow 7} \frac{-1}{7 x}=-1 / 49$.

