MATH 141

FINAL EXAM ANSWER KEY

December 16, 2000

Part A

1. **(20pts)** Let $f(x) = x^3 - 3x$.

(a) Find the tangent line to the graph of f(x) where x = 2.

$$f'(x) = 3x^2 - 3 \implies f'(2) = 9$$

Thus,

$$y - f(2) = 9(x - 2)$$

ANSWER:
$$y - 2 = 9(x - 2)$$

(b) Find the secant line to the graph of f(x) over the interval [-2, 4].

$$m = \frac{f(4) - f(-2)}{4 - (-2)} = 9$$

Thus,

$$y - f(-2) = 9(x - (-2))$$

ANSWER:
$$y + 2 = 9(x + 2)$$

(c) The Mean Value Theorem applied to f over the interval [-2, 4] implies that there is a number $c \in (-2, 4)$ such that f'(c) equals to the slope of the above secant. What is c?

ANSWER: 2

(d) Find the line passing through the point (2,2) perpendicular to the above secant. The slope should be $m' = -\frac{1}{m} = -\frac{1}{9}$, so that the line is given by:

$$y - f(2) = -\frac{1}{9}(x - 2).$$

ANSWER:
$$y - 2 = -\frac{1}{9}(x - 2)$$

2. (20pts) Answer each of the following questions:

(a) Let
$$f(t) = \frac{\sqrt{t}}{1+t}$$
. What is $f'(1)$?

$$f'(t) = \frac{\frac{1}{2\sqrt{t}}(1+t) - \sqrt{t}}{(1+t)^2}$$

(b) If
$$y = e^{x\sqrt{2}}$$
, what is $\frac{d^2y}{dx^2}$?

ANSWER:
$$2e^{x\sqrt{2}}$$

(c) If
$$f(\theta) = \sin(\theta)$$
, what is $f^{(65)}(\theta)$?

ANSWER:
$$\cos(\theta)$$

(d) What is
$$\frac{d}{dx}(e^{\sin\sqrt{\pi}} + \ln(2))$$
?

- 3. (10pts) Let $\theta \in (0, \frac{\pi}{2})$ be an angle such that $\cot(\theta) = \frac{1}{2}$.
 - (a) What is $tan(\theta)$?

Recall that
$$tan(\theta) = \frac{1}{\cot(\theta)}$$
.

(b) What is $sec(\theta)$?

$$1 + \tan^2(\theta) = \sec^2(\theta) \implies \sec^2(\theta) = 5$$

Take the positive solution since $\theta \in (0, \frac{\pi}{2})$.

ANSWER: $\sqrt{5}$

4. (20pts) Differentiate each of the following functions:

(a)
$$(x^2 + x)^{11}$$

ANSWER:
$$11(x^2 + x)^{10}(2x + 1)$$

(b)
$$e^x \tan(x)$$

ANSWER:
$$e^x \tan(x) + e^x \sec^2(x)$$

$$(c) \qquad \frac{\sin x}{(x+2)^2}$$

ANSWER:
$$\frac{(x+2)\cos x - 2\sin x}{(x+2)^3}$$

(d)
$$\sin(e^{x^2})$$

ANSWER:
$$2xe^{x^2}\cos(e^{x^2})$$

5. (10pts) Evaluate the following limits (note: some of them may be $+\infty$, $-\infty$, or may not even exist):

(a)
$$\lim_{x \to 3^+} \frac{\sqrt{x} - \sqrt{3}}{x - 3} = \lim_{x \to 3^+} \frac{\sqrt{x} - \sqrt{3}}{(\sqrt{x} - \sqrt{3})(\sqrt{x} + \sqrt{3})} = \lim_{x \to 3^+} \frac{1}{\sqrt{x} + \sqrt{3}}$$

ANSWER:
$$=\frac{1}{2\sqrt{3}}$$

(b)
$$\lim_{x \to 1} \frac{x^2 - 1}{x^2 + x - 2} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{(x - 1)(x + 2)} = \lim_{x \to 1} \frac{(x + 1)}{(x + 2)}$$

ANSWER:
$$\frac{2}{3}$$

6. (20pts) Let f be a function defined as follows:

$$f(x) = \begin{cases} x^2 - 2x & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ x^3 - 2x & \text{if } x > 0 \end{cases}$$

Because $f(0) = \lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} f(x) = 0$, function f is continuous at 0 as well as at all other numbers. Recall that:

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0},$$

provided that this limit exists.

(a) Evaluate the above limit as $x \to 0^+$.

$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{x^3 - 2x}{x} = \lim_{x \to 0^+} x^2 - 2 = -2$$

(b) Evaluate the above limit as $x \to 0^-$.

$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{x^{2} - 2x}{x} = \lim_{x \to 0^{-}} x - 2 = -2$$

ANSWER:
$$-2$$

(c) Is f differentiable at 0? If it is, what is f'(0)?

ANSWER: YES and
$$f'(0) = -2$$

(d) What is f'(x) for $x \in (-\infty, 0)$?

ANSWER:
$$2x - 2$$

End of Part A

Part B

- 7. (20pts) Differentiate each of the following functions:
 - (a) $\arctan(3x)$

ANSWER:
$$\frac{3}{1+9x^2}$$

(b)
$$\ln(1 + \frac{1}{x})$$

ANSWER:
$$\frac{1}{1+\frac{1}{x}}(-\frac{1}{x^2}) = -\frac{1}{x^2+x}$$

(c)
$$\ln(2^x x^2) = \ln(2^x) + \ln(x^2) = x \ln(2) + 2 \ln(x)$$

ANSWER:
$$\ln(2) + \frac{2}{x}$$

(d)
$$x^{x^2+x} = e^{(\ln x)(x^2+x)}$$

ANSWER:
$$x^{x^2+x}((x+1) + (\ln x)(2x+1))$$

8. (10pts) Evaluate the following limits (note: some of them may be $+\infty$, $-\infty$, or may not even exist):

(a)
$$\lim_{x \to \infty} \frac{(2x+2)^2}{(x+1)^2} = \lim_{x \to \infty} \left(\frac{2x+2}{x+1}\right)^2 = \lim_{x \to \infty} \left(2\frac{x+1}{x+1}\right)^2$$

$$\lim_{x \to -\infty} \frac{x^2 + 1}{x + 1}$$

ANSWER:
$$-\infty$$

9. (10pts) If $y^3 + y^2x = 3$, find the value of $\frac{dy}{dx}$ at the point (2, 1).

Differentiating

$$y^3 + y^2 x = 3,$$

gives that

$$3y^2y' + 2yy'x + y^2 = 0 \implies 3yy' + 2y'x + y = 0.$$

Then

$$(3y + 2x)y' = -y,$$

and

$$y' = \frac{-y}{3y + 2x}.$$

ANSWER:
$$-\frac{1}{7}$$

- 10. **(10pts)** Let $f(x) = x^{\frac{2}{3}}$.
 - (a) Find the linear approximation for f(x) at 27 (i.e.: an approximation valid for x near 27).

$$f(x) \approx f(27) + f'(27)(x - 27)$$
 for x near 27

Recall that $f'(x) = \frac{2}{3}x^{-\frac{1}{3}}$ and that $27^{\frac{1}{3}} = 3$. Therefore, $f(27) = (27)^{\frac{2}{3}} = 3^2 = 9$ and $f'(27) = \frac{2}{3} \frac{1}{3} = \frac{2}{9}$. With this, the above becomes:

$$f(x) \approx 9 + \frac{2}{9}(x - 27).$$

ANSWER:
$$f(x) \approx 9 + \frac{2}{9}(x - 27)$$

(b) Use the above to calculate $(27.003)^{\frac{2}{3}}$. Calculate your answer to 5 decimal places.

$$f(27.003) \approx 9 + \frac{2}{9}(27.003 - 27) = 9 + \frac{2}{9}(0.003) = 9 + \frac{2}{3}(0.001)$$

After doing long division (by 3), we have that

$$f(27.003) \approx 9 + 2(0.000333) = 9 + 0.000666 = 9.00067.$$

ANSWER: 9.00067

- 11. (10pts) Air is pumped into a spherical balloon at a rate of $10 \,\mathrm{cm}^3/\mathrm{min}$ (recall that the volume and the surface area of a sphere of radius r are given by $V = \frac{4}{3}\pi r^3$ and $A = 4\pi r^2$, respectively).
 - (a) What is the rate of change of the radius (in cm/min) at a moment when $r = 9 \,\mathrm{cm}$?

$$V' = 4\pi r^2 r' \implies r' = \frac{V'}{4\pi r^2}$$

ANSWER:
$$\frac{10}{324\pi}$$

(b) What is the rate of change of the area (in cm²/min) at the same time?

$$A' = 8\pi r r'$$

ANSWER:
$$8\pi 9 \frac{10}{4\pi(9)^2} = \frac{20}{9}$$

12. (10pts) Evaluate the following limits (note: some of them may be $+\infty$, $-\infty$, or may not even exist):

(a)
$$\lim_{x \to 0} \frac{\cos x - 1}{x^2}$$

By using L'Hospital's rule twice:

$$\lim_{x \to 0} \frac{\cos x - 1}{x^2} = \lim_{x \to 0} \frac{-\sin x}{2x} = \lim_{x \to 0} \frac{-\cos x}{2} = -\frac{1}{2}.$$

ANSWER:
$$-\frac{1}{2}$$

(b)
$$\lim_{x \to \infty} \sqrt{1 + \frac{1}{e^x}}$$

$$\lim_{x \to \infty} \sqrt{1 + \frac{1}{e^x}} = \sqrt{1 + \lim_{x \to \infty} \frac{1}{e^x}} = \sqrt{1 + 0} = 1$$

- 13. **(30pts)** Let $f(x) = \frac{x^3}{3} \frac{3x^2}{2} + 2x$.
 - (a) Find all critical numbers of f.

Note that

$$f'(x) = x^2 - 3x + 2 = (x - 1)(x - 2).$$

Since f is differentiable everywhere, all the critical numbers are found by solving the equation f'(x) = 0.

ANSWER: 1,2

(b) Find all intervals on which f is increasing.

Since f' is positive on $(-\infty, 1)$ and on $(2, \infty)$, f is increasing on these intervals.

ANSWER: $(-\infty, 1), (2, \infty)$

(c) Find all intervals on which f is decreasing.

Since f' is negative on (1, 2), f is decreasing on this interval.

ANSWER: (1, 2)

(d) Find all intervals on which f is concave up.

Note that

$$f''(x) = 2x - 3.$$

Because f'' is zero only at $x = \frac{3}{2}$, there are only two intervals to consider.

Since f'' is positive on $(\frac{3}{2}, \infty)$, f is concave up on this interval.

ANSWER:
$$(\frac{3}{2}, \infty)$$

(e) Find all intervals on which f is concave down.

Since f'' is negative on $(-\infty, \frac{3}{2})$, f is concave down on this interval.

ANSWER:
$$(-\infty, \frac{3}{2})$$

(f) Find all inflection points of f.

From the above two parts, it is clear that the graph of f switches concavity at $x = \frac{3}{2}$.

ANSWER:
$$\frac{3}{2}$$