MATH 141

EXAM I WITH ANSWERS

October 12, 1999

No calculators allowed on this exam. Please show all your work.

1. (10 pts total) Fill in the blanks:
 \[270^\circ = \frac{3\pi}{2} \]
 \[135^\circ = \frac{3\pi}{4} \text{ radians} \]
 \[60^\circ = \frac{\pi}{3} \text{ radians} \]
 \[\tan \pi = 0 \]
 \[\sin \frac{\pi}{3} = \frac{\sqrt{3}}{2} \]

2. (8 pts) Let \(h(x) = \ln(x^2+1) \). Find functions \(f(x) \) and \(g(x) \) such that \(h(x) = (f \circ g)(x) \), i.e. \(h(x) = f(g(x)) \).

 \[f(x) = \ln(x) \]
 \[g(x) = x^2 + 1 \]

3. (9 pts)
 (a) Find the slope \(m \) of the line through the two points (1,4) and (3,10).

 ANSWER: 3

 (b) Write the equation of this line.

 ANSWER: \(y = 3x + 1 \)

 (c) What is the equation of the line perpendicular to the line in parts (a) and (b) that goes through the origin.

 ANSWER: \(y = -x/3 \)
4. (8 pts) Consider the one-to-one function \(f(x) = x^2 + 1 \) with domain \([0, \infty)\).
 (a) Find \(f^{-1}(x) \).
 \[\text{ANSWER: } \sqrt{x - 1} \]
 (b) State the domain of \(f^{-1}(x) \).
 \[\text{ANSWER: } [1, \infty) \]

5. (8 pts) Find all \(x \) such that
 (a) \(3^x = 2^{x^2} \)
 \[\text{ANSWER: } x = 0, x = \ln(3)/\ln(2) \]
 (b) \(\ln(\ln x) = 2 \)
 \[\text{ANSWER: } x = e^{e^2} \]

6. (9 pts) Find the exact value of the following:
 (a) \(\log_5 10 + \log_5 20 - 3 \log_5 2 \)
 \[\text{ANSWER: } 2 \]
 (b) \(e^{\ln 5 + \ln 3} \)
 \[\text{ANSWER: } 15 \]
 (c) \(\ln e^{3.1} \)
 \[\text{ANSWER: } 3.1 \]

7. (9 pts) The position of a ball at time \(t \), measured in seconds, is given by the formula
 \[s(t) = t^2 + 3t + 1 \]
 measured in feet.
 (a) What is the average velocity of the ball between the times \(t = 1 \) and \(t = 3 \)?
 \[\text{ANSWER: } 3 \]
 (b) What is the average velocity between the times \(t = 1 \) and \(t = 1 + h \)? Simplify your answer as much as possible.
 \[\text{ANSWER: } 5 + h \]
 (c) What is the instantaneous velocity of the ball at time \(t = 1 \)?
 \[\text{ANSWER: } 5 \]
8. (10 pts) Let \(f(x) \) be the function whose graph is shown:

[GRAPH NOT AVAILABLE]

(a) Find the following limits if they exist. If a limit does not exist, indicate this.

(i) \(\lim_{x \to 5} f(x) \)

(ii) \(\lim_{x \to 2} f(x) \)

(iii) \(\lim_{x \to 1^+} f(x) \)

(iv) \(\lim_{x \to 1^-} f(x) \)

(v) \(\lim_{x \to 0^+} f(x) \)

(vi) \(\lim_{x \to -2^-} f(x) \)

(b) At which value(s) of \(x \) is \(f(x) \) not continuous?

ANSWER:

9. (10 pts) Evaluate the following limits. Write DNE if the limit does not exist.

(a) \(\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 + 2x - 3} \) ANSWER: \(-\frac{1}{4}\)

(b) \(\lim_{x \to 1} \frac{x^2 + 6x - 7}{x^2 - 3x - 4} \) ANSWER: 0

(c) \(\lim_{x \to 4} \frac{4 - x}{2 - \sqrt{x}} \) ANSWER: 4

(d) \(\lim_{x \to 3} \frac{x^2 + 6x + 8}{x^2 - 2x - 3} \) ANSWER: DNE

(e) \(\lim_{x \to 2^-} \frac{x - 2}{|x - 2|} \) ANSWER: \(-1\)
10. (9 pts) Consider the function \(f(x) = \frac{2x^3}{(x + 2)^2(x - 1)}. \)

(a) Find the equation(s) of all vertical asymptotes to the graph of \(f(x) \).

\[\text{ANSWER: } x = 1, \ x = -2 \]

(b) Find the equation(s) of all horizontal asymptotes to the graph of \(f(x) \).

\[\text{ANSWER: } y = 2 \]

11. (10 pts)

(a) State the limit definition of the derivative of a function \(f(x) \) at a point \(a \), i.e. \(f'(a) \).

\[\text{ANSWER: } \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \]

(b) Using the definition in part (a), calculate

\[f'(2) \text{ if } f(x) = \frac{1}{x + 1}. \]

(Note: you must use the definition.)

\[\text{ANSWER: } 1/9 \]