MATH 141
Final Exam - Answer Key
May 7, 2001
Part I

1. (8 points)

(a) Solve the inequality $17x + 3 < 14x - 2$

$3x < -5$

$x < -\frac{5}{3}$

(b) Write the equation of the line parallel to the line $4x - 6y = 3$ that goes through $(1, 1)$.

First find the slope of the given line:

$6y = 4x - 3$

$y = \frac{2}{3}x - \frac{1}{2}$

slope $= \frac{2}{3}$

Parallel lines have equal slopes, so we have

$y - 1 = \frac{2}{3}(x - 1)$

$y = \frac{2}{3}x + \frac{1}{3}$

2. (10 points) Find the exact value of:

(a) $\tan(\pi) = 0$

(b) $\sin^2(3) + \cos^2(3) = 1$

(c) $\csc\left(\frac{\pi}{2}\right) = \frac{1}{\sin\left(\frac{\pi}{2}\right)} = 1$

(d) $\frac{1}{2}\ln 9 + \ln 5 - \ln 15 = \ln 9^{\frac{1}{2}} + \ln 5 - \ln 15 = \ln \frac{5}{15} = \ln 1 = 0$

(e) $2^{\log_2 3 + \log_2 7} = 2^{\log_2 21} = 21$

3. (10 points)

(a) Let $f(x) = \arcsin(2x)$ and $g(x) = x^3$. Compute $h(x) = (f \circ g)(x)$

$h(x) = f(g(x)) = f(x^3) = \arcsin(2x^3)$
(b) Find the inverse of \(h \).

\[
y = \arcsin(2x^3)
\]
\[
\sin y = 2x^3
\]
\[
\sin \frac{y}{2} = x^3
\]
\[
\sqrt[3]{\sin \frac{y}{2}} = x
\]
\[
f^{-1}(y) = \sqrt[3]{\sin \frac{y}{2}}
\]
\[
f^{-1}(x) = \sqrt[3]{{\sin x \over 2}}
\]

4. (10 points) Solve the equations:

(a) \(\ln x - \ln x^3 = -4 \)

\[
\ln x - 3 \ln x = -4
\]
\[
-2 \ln x = -4
\]
\[
\ln x = 2
\]
\[
x = e^2
\]

(b) \(5^{x^2-4} = 125 \)

\[
\log_5 5^{x^2-4} = \log_5 125
\]
\[
x^2 - 4 = 3
\]
\[
x^2 = 7
\]
\[
x = \pm \sqrt{7}
\]

5. (8 points) Find \(c \) such that the function \(f \) is continuous on \(\mathbb{R} \).

\[
f(x) = \begin{cases}
 x^2 - c, & x \leq 5 \\
 cx + 6, & x > 5
\end{cases}
\]

Since \(x^2 - c \) and \(cx + 6 \) are continuous everywhere, \(f \) is continuous at all points except possibly at 5. It is continuous at 5 if and only if the functions \(x^2 - c \) and \(cx + 6 \) agree at 5, i.e.

\[
5^2 - c = c \cdot 5 + 6
\]
\[
6c = 19
\]
c = \frac{19}{6}

6. (24 points) Compute the limits (do not use L’Hospital’s Rule):

 (a) \lim_{x \to 3} \frac{x^2 - 7x + 12}{x^2 - 9} = \lim_{x \to 3} \frac{(x - 4)(x - 3)}{(x + 3)(x - 3)} = \lim_{x \to 3} \frac{x - 4}{x + 3} = -\frac{1}{6}

 (b) \lim_{x \to 4^+} \frac{x^2 + 3x}{(x - 4)(x + 7)} = \left(\frac{\text{pos.}}{\text{small pos.}(\text{pos.})} \right) = +\infty

 (c) \lim_{x \to 5} \frac{\frac{1}{x} - \frac{1}{5}}{x - 5} = \lim_{x \to 5} \frac{5 - x}{5x(x - 5)} = \lim_{x \to 5} \frac{-1}{5x} = -\frac{1}{25}

 (d) \lim_{x \to \infty} \frac{6x^3 - 3x^2 + 4}{x^3 + 7x - 5} = \lim_{x \to \infty} \frac{6 - \frac{3}{x} + \frac{4}{x^3}}{1 + \frac{7}{x} - \frac{5}{x^3}} = \frac{6}{1} = 6

 (e) \lim_{x \to -\infty} \frac{x^7 + 10}{x^4 + 3} = \lim_{x \to -\infty} \frac{x^3 + \frac{10}{x^4}}{1 + \frac{3}{x^4}} = (\infty)^3 = -\infty

 (f) \lim_{x \to 0} x^4 \sin \left(\frac{1}{2x} \right) = 0 \text{ by the Squeeze theorem because } -x^4 \leq x^4 \sin \left(\frac{1}{2x} \right) \leq x^4 \text{ and } \lim_{x \to 0} (-x^4) = \lim_{x \to 0} (x^4) = 0

 (g) \lim_{x \to 0} \frac{\sin(4x)}{9 \sin(6x)} = \lim_{x \to 0} \frac{\sin(4x)}{9 \cdot 6 \cdot \sin(6x) / 6x} = \lim_{x \to 0} \frac{4 \cdot \sin(4x) / 4x}{9 \cdot 6 \cdot 1 / 6} = \frac{2}{27}

 (h) \lim_{x \to 0} e^x \tan(2x) = \lim_{x \to 0} \frac{(\cos x - 1) \cos(2x)}{e^x \sin(2x)} = \lim_{x \to 0} \frac{\cos x - 1 \cos(2x)}{e^x \sin(2x) / 2x} = \frac{0 \cdot 1}{1 \cdot 2 \cdot 1} = 0

7. (12 points) Let \(f(x) = \frac{x}{x - 3} \)

 (a) Find the vertical and horizontal asymptotes of the graph of \(f \).

 \(f \) is not defined at 3, and \(\lim_{x \to 3^+} f(x) = \infty \). Therefore, \(x = 3 \) is a vertical asymptote.

 \(\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1}{1 - \frac{3}{x}} = 1 \) and \(\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{1}{1 - \frac{3}{x}} = 1 \), so \(y = 1 \) is a horizontal asymptote.

 (b) Find the derivative of \(f \) using the definition.

 \[f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} = \lim_{h \to 0} \frac{x + h - x}{h} = \lim_{h \to 0} \frac{x + h - 3}{h(x + h + 3)(x - 3)} = \lim_{h \to 0} \frac{x^2 + hx - 3x - 3h - x^2 - xh + 3x}{h(x + h + 3)(x - 3)} = \lim_{h \to 0} \frac{-3h}{h(x + h + 3)(x - 3)} = -\frac{3}{(x - 3)^2} \]
(c) Find the tangent line to the graph of \(f \) at \((4, 4)\).

\[
\text{slope} = f'(4) = -3
\]
\[
y - 4 = -3(x - 4)
\]
\[
y = -3x + 16
\]

8. (12 points) Find the derivatives of:

(a) \(f(x) = e^{4x} \tan 2x - \sqrt{x} \cos x^2 \)

\[
f'(x) = 4e^{4x} \tan(2x) + 2e^{4x} \sec^2(2x) - \left(\frac{1}{2\sqrt{x}} \cos(x^2) - \sqrt{x} \sin(x^2) \cdot 2x \right)
\]

(b) \(g(x) = \frac{2 \cot x - x^6}{x^3 + 5} \)

\[
g'(x) = \frac{(-2\cot^2 x - 6x^5)(x^3 + 5) - (2\cot x - x^6)(3x^2)}{(x^3 + 5)^2}
\]

(c) \(h(x) = 4^{\cos(5x)} + (\cos(5x))^4 \)

\[
h'(x) = \ln 4 \cdot 4^{\cos(5x)}(-\sin(5x)) \cdot 5 + 4(\cos(5x))^3(-\sin(5x)) \cdot 5
\]

(d) \(k(x) = \sqrt[3]{\sin(e^{-x})} \)

\[
k'(x) = \frac{1}{3}(\sin(e^{-x}))^{-\frac{2}{3}} \cos(e^{-x}) \cdot e^{-x} \cdot (-1)
\]

9. (6 points) The cost function of producing \(x \) units of some commodity is \(C(x) = 1000 + 23x + 0.002x^3 \). What is the marginal cost at the production level of 400 units?

Marginal cost function: \(C'(x) = 23 + 0.006x^2 \)

\[
C'(400) = 23 + 0.006 \cdot 400^2 = 983
\]

Part II

1. (9 points) Differentiate the following functions:

(a) \(f(x) = \arcsin(2x) \)

\[
f'(x) = \frac{1}{\sqrt{1-(2x)^2}} \cdot 2
\]

(b) \(g(x) = e^{\arctan x} \)

\[
g'(x) = e^{\arctan x} \cdot \frac{1}{1+x^2}
\]

(c) \(h(x) = \log_3 (-\sin x) \)

\[
h'(x) = \frac{1}{(\ln 3)(-\sin x)} \cdot (-\cos x)
\]
2. (12 points) Let \(f(x) = x^3 \ln x \). Find \(f'(x) \), \(f''(x) \), \(f'''(x) \), and \(f^{(4)}(x) \).

\[
\begin{align*}
f'(x) &= 3x^2 \ln x + x^3 \frac{1}{x} = 3x^2 \ln x + x^2 \\
f''(x) &= 6x \ln x + 3x^2 \frac{1}{x} + 2x = 6x \ln x + 5x \\
f'''(x) &= 6 \ln x + 6x \frac{1}{x} + 5 = 6 \ln x + 11 \\
f^{(4)}(x) &= \frac{6}{x}
\end{align*}
\]

3. (10 points) If \(xy^3 - x^2y^2 + 2y = -8 \) and \(y(3) = 2 \), find \(y'(3) \).

\[
\begin{align*}
y^3 + x3y^2y' - (2xy^2 + x^2y y') + 2y' &= 0 \\
y^3 + 3xy^2y' - 2xy^2 - 2x^2y y' + 2y' &= 0 \\
3xy^2y' - 2x^2yy' + 2y' &= 2xy^2 - y^3 \\
(3xy^2 - 2x^2y + 2)y' &= 2xy^2 - y^3 \\
y' &= \frac{2xy^2 - y^3}{3xy^2 - 2x^2y + 2}
\end{align*}
\]

If \(x = 3 \) and \(y = 2 \),

\[
y'(3) = \frac{2 \cdot 3^2 - 2^3}{3 \cdot 2^2 - 2 \cdot 2^2 + 2} = \frac{16}{2} = 8
\]

4. (10 points) Let \(f(x) = 5(x^2 + 1)^3(\cos x)^4x \). Use logarithmic differentiation to find \(f'(x) \).

\[
\begin{align*}
\ln[f(x)] &= \ln[5(x^2 + 1)^3(\cos x)^4x] \\
\ln[f(x)] &= \ln 5 + \ln(x^2 + 1)^3 + \ln(\cos x)^4x \\
\ln[f(x)] &= \ln 5 + 3 \ln(x^2 + 1) + 4x \ln(\cos x) \\
\frac{1}{f(x)} \cdot f'(x) &= 0 + \frac{3}{x^2 + 1} \cdot 2x + 4 \ln(\cos x) + 4x \frac{1}{\cos x} (-\sin x) \\
f'(x) &= f(x) \left(\frac{6x}{x^2 + 1} + 4 \ln(\cos x) - \frac{4x \sin x}{\cos x} \right) \\
f'(x) &= 5(x^2 + 1)^3(\cos x)^4x \left(\frac{6x}{x^2 + 1} + 4 \ln(\cos x) - \frac{4x \sin x}{\cos x} \right)
\end{align*}
\]

5. (10 points) Find the linearization of \(f(x) = x^{3/2} \) at \(x = 4 \) and use it to approximate \((4.02)^{3/2} \).

\[
L(x) = f(x) + f'(4)(x - 4) \\
f(4) = 4^{3/2} = 8
\]
\[f'(x) = \frac{3}{2} x^{1/2} \]
\[f'(4) = \frac{3}{2} 4^{1/2} = 3 \]
\[L(x) = 8 + 3(x - 4) = 3x - 4 \]
\[(4.02)^{3/2} = f(4.02) \approx L(4.02) = 3 \cdot 4.02 - 4 = 8.6 \]

6. (12 points) Car \(A \) starts moving north at \(0.5 \) \(\text{km/min} \) from a point \(P \). At the same time car \(B \) starts moving west at \(1 \) \(\text{km/min} \) from a point \(10 \) \(\text{km} \) due east of \(P \). At what time rate is the distance between the cars changing 6 minutes later? Is the distance increasing or decreasing at this instant?

Let \(x \) be the distance from car \(A \) to point \(P \), \(y(x) \) the distance from car \(B \) to point \(P \), and \(z(t) \) the distance between the cars. Then \((x(t))^2 + (y(t))^2 = (z(t))^2 \) (because \(ABP \) is a right triangle). Differentiate this equation with respect to time \(t \):

\[2x(t)x'(t) + 2y(t)y'(t) = 2z(t)z'(t) \]

After 6 minutes \(x = 0.5 \cdot 6 = 3, \ y = 10 - 1 \cdot 6 = 4, \) and \(z = \sqrt{x^2 + y^2} = 5 \).

Since car \(A \) goes away from point \(P \) at a speed of \(0.5 \) \(\text{km/min} \), \(x' = 0.5 \). Car \(B \) approaches \(P \) at a speed of \(1 \) \(\text{km/min} \), so \(y' = -1 \). So we have

\[2 \cdot 3 \cdot 0.5 + 2 \cdot 4 \cdot (-1) = 2 \cdot 5 \cdot z' \]
\[3 - 8 = 10z' \]
\[z' = -\frac{1}{2} \text{ (km/min)} \]

7. (15 points) Let \(f(x) = x^4 + 2x^3 - 5 \).

(a) Find the critical numbers of \(f(x) \).
\[f'(x) = 4x^3 + 6x^2 = 2x^2(2x + 3) = 0 \]
when \(x = 0 \) or \(x = -\frac{3}{2} \Rightarrow \)
0 and \(-\frac{3}{2}\) are critical numbers.

(b) Where is \(f(x) \) increasing? Decreasing?
\[f'(x) > 0 \text{ on } (-\frac{3}{2}, +\infty) \Rightarrow f(x) \text{ is increasing on } (-\frac{3}{2}, +\infty). \]
\[f'(x) < 0 \text{ on } (-\infty, -\frac{3}{2}) \Rightarrow f(x) \text{ is decreasing on } (-\infty, -\frac{3}{2}). \]

(c) Find local maxima and minima of \(f(x) \).
\[f'(x) \text{ changes from negative to positive at } -\frac{3}{2} \Rightarrow f(x) \text{ has a local minimum at } -\frac{3}{2}. \]

(d) Where is \(f(x) \) concave upward? Concave downward?
\[f''(x) = 12x^2 + 12x = 12x(x + 1) \]
\[f''(x) > 0 \text{ on } (-\infty, -1) \text{ and } (0, +\infty) \Rightarrow f(x) \text{ is concave upward on } (-\infty, -1) \text{ and } (0, +\infty). \]
\[f''(x) < 0 \text{ on } (-1, 0) \Rightarrow f(x) \text{ is concave downward on } (-1, 0). \]

(e) Find the inflection points of \(f(x) \).
\(f(x) \) changes the direction of concavity at \(-1\) and \(0 \Rightarrow -1 \text{ and } 0 \) are inflection points.

8. (10 points) Show that the equation \(x^5 + 3x^3 + 5x + 7 = 0 \) has exactly one root in the interval \([-1, 1]\).

Let \(f(x) = x^5 + 3x^3 + 5x + 7 \).

Since \(f(-1) = -2 < 0 \) and \(f(1) = 16 > 0 \), by the Intermediate Value Theorem \(f(x) \)
has at least one root between \(-1\) and \(1\).

Suppose \(f(x) \) has two roots. Then by Rolle’s Theorem there exists a point \(c \) s.t. \(f'(c) = 0 \). But \(f'(x) = 5x^4 + 9x^2 + 5 > 0 \) for all \(x \). Therefore, \(f(x) \) has exactly one root.

9. (12 points) Evaluate the following limits:

(a) \[\lim_{x \to 0} \frac{\tan x}{e^x - 1} = \lim_{x \to 0} \frac{(\tan x)'}{e^x - 1}' = \lim_{x \to 0} \frac{(\sec x)^2}{e^x} = \frac{1}{1} = 1 \]

(b) \[\lim_{x \to \infty} \frac{x^2}{e^{2x}} = \lim_{x \to \infty} \frac{x^2}{e^{2x}} = \lim_{x \to \infty} \frac{(x^2)'}{e^{2x}} = \lim_{x \to \infty} \frac{2x}{2e^{2x}} = \frac{\infty}{\infty} = \lim_{x \to \infty} \frac{2x}{2e^{2x}} = 0 \]

(c) \[\lim_{x \to 0^+} (-\ln x)^x = \lim_{x \to 0^+} (e^{-\ln x})^x = \lim_{x \to 0^+} e^{-\ln x} = e^{x \to 0^+} (-\ln x) = e^x = e \]
\[\lim_{x \to 0^+} x \ln x = \lim_{x \to 0^+} \frac{\ln x}{1/x} = \lim_{x \to 0^+} \frac{1/x}{-1/x^2} = \lim_{x \to 0^+} (-x) = 0 \]

Thus \(\lim_{x \to 0^+} (-\ln x)^x = e \lim_{x \to 0^+} x \ln x = e^0 = 1 \)