MATH 141
Midterm 2 - Answer key
April 5, 2001

1. (20 points) Compute the limits:

 (a) \[\lim_\limits{x \to \infty} \frac{6x^2 + 5x}{(1 - x)(2x - 3)} = \lim_\limits{x \to \infty} \frac{6x^2 + 5x}{-2x^2 + 5x - 3} = \]
 \[= \lim_\limits{x \to \infty} \frac{6 + \frac{5}{x}}{-2 + \frac{5}{x} - \frac{3}{x^2}} = \frac{6}{-2} = -3 \]

 (b) \[\lim_\limits{x \to \infty} \frac{x^2 + 4x + 1}{x^5 - 3x^3 + 4} = \lim_\limits{x \to \infty} \frac{\frac{1}{x^3} + \frac{4}{x} + \frac{1}{x^5}}{1 - \frac{3}{x^2} + \frac{4}{x^5}} = 0 = 0 \]

 (c) \[\lim_\limits{x \to \infty} \sqrt{x^2 + 2x + 2} - x = \lim_\limits{x \to \infty} \frac{(\sqrt{x^2 + 2x + 2} - x)(\sqrt{x^2 + 2x + 2} + x)}{\sqrt{x^2 + 2x + 2} + x} = \]
 \[= \lim_\limits{x \to \infty} \frac{2x + 2}{\sqrt{x^2 + 2x + 2} + x} = \lim_\limits{x \to \infty} \frac{2 + \frac{2}{x}}{\sqrt{1 + \frac{2}{x} + \frac{2}{x^2}} + 1} = \frac{2}{\sqrt{1}} = 1 \]

 (d) \[\lim_\limits{x \to \infty} (x + \sqrt{x})(x^2 + 4) = (\infty + \infty)(\infty + 4) = \infty \]

 (e) \[\lim_\limits{x \to \infty} e^{-\frac{2}{x^2}} = e^{\left(\lim_\limits{x \to \infty} -\frac{3}{x^2} \right)} = e^0 = 1 \]

2. (10 points) Find the horizontal asymptotes of the graph of the function \(f(x) = \frac{x - 3}{\sqrt{x^2 + 3x + 2}} \)

 \[\lim_\limits{x \to \infty} f(x) = \lim_\limits{x \to \infty} \frac{1 - \frac{3}{x}}{\sqrt{\frac{x^2 + 3x + 2}{x}}} = \lim_\limits{x \to \infty} \frac{1 - \frac{3}{x}}{\sqrt{1 + \frac{3}{x} + \frac{2}{x^2}}} = 1 \]

 \[\lim_\limits{x \to -\infty} f(x) = \lim_\limits{x \to -\infty} \frac{1 - \frac{3}{x}}{\sqrt{\frac{x^2 + 3x + 2}{x}}} = \lim_\limits{x \to -\infty} \frac{1 - \frac{3}{x}}{-\sqrt{1 + \frac{3}{x} + \frac{2}{x^2}}} = -1 \]

 Therefore, the horizontal asymptotes are \(y = 1 \) and \(y = -1 \).
3. (10 points) Let $f(x) = x^2 - \frac{2}{x}$.

(a) Find $f'(x)$ using the definition of the derivative.

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - \frac{2}{x+h} - (x^2 - \frac{2}{x})}{h} =$$

$$= \lim_{h \to 0} \frac{2x - \frac{2}{x+h} + x^2 + 2xh + h^2 - x^2}{h} = \lim_{h \to 0} \frac{2x + 2xh - 2x}{x(x+h)} + 2xh + h^2$$

$$= \lim_{h \to 0} \left(\frac{2}{x(x+h)} + 2x + h \right) = \frac{2}{x^2} + 2x$$

(b) Find the tangent to the graph of f at $(1, -1)$.

slope $= f'(1) = 4$

$y + 1 = 4(x - 1)$

$y = 4x - 5$

(c) At what point of the graph is the tangent horizontal?
the tangent line is horizontal when the derivative is 0.

$$\frac{2}{x^2} + 2x = 0$$

$$\frac{1}{x^2} + x = 0$$

$$1 + x^3 = 0$$

$$x^3 = -1$$

$$x = -1$$

$y = f(-1) = 3$

Therefore, the tangent line is horizontal at $(-1, 3)$.

4. (12 points) Compute the derivatives of

(a) $f(x) = e^x \cos x + x^2 \sqrt{x} - 7 \tan x + \frac{1}{x} = e^x \cos x + x^{\frac{7}{2}} - 7 \tan x + x^{-1}$

$f'(x) = e^x \cos x + 3x (- \sin x) + \frac{7}{2} x^{\frac{4}{2}} - 7 \sec^2 x - x^{-2}$

(b) $g(x) = \sqrt{x} - 2x + 4$

$g'(x) = \frac{(\frac{1}{2}x^{-\frac{1}{2}} - 2)(x^3 + 12) - (\sqrt{x} - 2x + 4)(3x^2)}{(x^3 + 12)^2}$

(c) $h(x) = \frac{2 \sin x}{\tan x - 4 \cos x}$

$h'(x) = \frac{2 \cos x (\tan x - 4 \cos x) - 2 \sin x (\sec^2 x + 4 \sin x)}{(\tan x - 4 \cos x)^2}$
5. **(8 points)** A particle moves along a straight line and its position at time \(t \) is \(s(t) = t^3 - 9t^2 + 15t + 10 \)

 (a) Find the velocity of the particle at time \(t = 2 \).

 \[
 v(t) = s'(t) = 3t^2 - 18t + 15
 \]

 \[
 v(2) = 3 \cdot 2^2 - 18 \cdot 2 + 15 = -9
 \]

 (b) When is the particle at rest?

 The particle is at rest when \(v(t) = 0 \):

 \[
 3t^2 - 18t + 15 = 0
 \]

 \[
 3(t^2 - 6t + 5) = 0
 \]

 \[
 3(t - 1)(t - 5) = 0
 \]

 \[t = 1 \quad \text{and} \quad t = 5 \]

6. **(6 points)** The volume of a cube with side \(s \) is \(V(s) = s^3 \). What is the rate of change of the volume with respect to \(s \) when \(s = 5 \)?

 The rate of change is the derivative: \(V'(s) = 3s^2 \)

 \[
 V'(5) = 3 \cdot 5^2 = 75
 \]

7. **(12 points)** Compute the limits:

 (a) \[
 \lim_{x \to 0} \frac{\cot 3x}{\csc x} = \lim_{x \to 0} \frac{\cos 3x / \sin 3x}{1 / \sin x} = \lim_{x \to 0} \frac{(\sin x)(\cos 3x)}{3 \sin 3x} = \frac{1 \cdot 1}{3 \cdot 1} = \frac{1}{3}
 \]

 (b) \[
 \lim_{x \to 0} \frac{\sin^2 x}{2x} = \lim_{x \to 0} \left(\frac{\sin x \cdot \sin x}{x} \right) = 0 \cdot 1 = 0
 \]

 (c) \[
 \lim_{x \to 0} \frac{\cos x - 1}{x^2 + 4x} = \lim_{x \to 0} \left(\frac{\cos x - 1}{x} \cdot \frac{1}{x + 4} \right) = 0 \cdot \frac{1}{4} = 0
 \]

8. **(10 points)** Where is the function \(f \) differentiable?

 \[
 f(x) = \begin{cases}
 x + 4 & , x \leq 2 \\
 x^2 - 2x + 6 & , x > 2
 \end{cases}
 \]

 Both \(x + 4 \) and \(x^2 - 2x + 6 \) are differentiable on \(\mathbb{R} \) (in fact, all polynomials are differentiable on \(\mathbb{R} \)). Therefore, the function \(f \) is differentiable at all points except possibly at 2. So we only have to find out whether \(f \) is differentiable at 2. There are two ways to do this.
1. By definition, f is differentiable at 2 if $f'(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2}$ exists.

\[f(2) = 6. \] If $x < 2$, then $f(x) = x + 4$. If $x > 2$, then $f(x) = x^2 - 2x + 6$, so we have to find the one-sided limits separately.

\[
\lim_{x \to 2^-} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2^-} \frac{x + 4 - 6}{x - 2} = \lim_{x \to 2^-} \frac{x - 2}{x - 2} = 1
\]

\[
\lim_{x \to 2^+} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2^+} \frac{x^2 - 2x + 6 - 6}{x - 2} = \lim_{x \to 2^+} \frac{x(x - 2)}{x - 2} = \lim_{x \to 2^+} x = 2
\]

The one-sided limits are not equal, therefore $\lim_{x \to 2} \frac{f(x) - f(2)}{x - 2}$ doesn’t exist.

Note: You can use the definition $f'(2) = \lim_{h \to 0} \frac{f(2 + h) - f(2)}{h}$ if you prefer. Consider cases $h < 0$ and $h > 0$, and you will see that $\lim_{h \to 0^+}$ and $\lim_{h \to 0^-}$ are not equal. Therefore, $\lim_{h \to 0} \frac{f(2 + h) - f(2)}{h}$ doesn’t exist.

2. $f(x)$ is continuous at 2 if and only if
(a) the functions $x + 4$ and $x^2 - 2x + 6$ agree at 2
(b) the derivatives of $x + 4$ and $x^2 - 2x + 6$ agree at 2

Note: the first condition ensures that $f(x)$ is continuous, and the second condition ensures that $f(x)$ is smooth.

Check: (a) $2 + 4 = 2^2 - 2 \cdot 2 + 6$ true
(b) the derivatives are 1 and $2x - 2$, and $1 \neq 2 \cdot 1 - 2$.

So $f(x)$ is not differentiable at 2.

Therefore, the function $f(x)$ is differentiable at all points except for 2.

9. (12 points) Find the derivatives of:

(a) $f(x) = \sqrt{\tan x + 2x}$

 $f'(x) = \frac{1}{2}(\tan x + 2x)^{-\frac{1}{2}} \cdot (\sec^2 x + 2)$

(b) $g(x) = \sin^2(\cos x) = (\sin(\cos x))^2$

 $g'(x) = 2 \sin(\cos x) \cdot \cos(\cos x) \cdot (-\sin x)$

(c) $h(x) = 2x^2 + 3 \sin x$

 $h'(x) = 2 \cdot 2x + 3 \sin x \cdot (2x + 3 \cos x)$

(d) $k(x) = \cos(e^{x}) = \cos(e^{(x-1)})$

 $k'(x) = -\sin(e^{(x-1)}) \cdot e^{(x-1)} \cdot (-x^{-2})$