MATH 142

MIDTERM EXAM II ANSWERS April 11, 2002

1. (10 pts) Find the area of the region enclosed by the curves $x = y^2 + 2$ and x = 4. Setting $y^2 + 2 = 4$ yields $y = \pm \sqrt{2}$.

$$A = \int_{-\sqrt{2}}^{\sqrt{2}} 4 - (y^2 + 2) \, dy = \int_{-\sqrt{2}}^{\sqrt{2}} 2 - y^2 \, dy = 2y - \frac{1}{3}y^3 \Big|_{-\sqrt{2}}^{\sqrt{2}}$$

ANSWER: $2\sqrt{2} - \frac{2}{3}\sqrt{2} - \left(-2\sqrt{2} + \frac{2}{3}\sqrt{2}\right) = \frac{8}{3}\sqrt{2}$

2. (10 pts) A spring at rest has length of 2m. Assuming that the spring constant k equals 10 N/m, calculate the work required to stretch the spring so as to increase its length to 4m.

We use x to denote the amount by which the spring is stretched beyond its rest length.

$$W = \int_0^2 10x \, dx = 5x^2 \Big|_0^2 = 20$$

Here we have made use of the Hooke's Law which says that F(x) = kx.

ANSWER: 20 Nm

3. (20 pts) Find the volumes of the solids obtained by rotating the specified regions about the given axes.

(a) enclosed by $y = \sqrt{x-1}$, x = 1, and y = 1; about y = 0

This can be done using slices. Setting $1 = \sqrt{x-1}$ yields x = 2.

$$V = \int_{1}^{2} \pi \left(1^{2} - \left(\sqrt{x-1} \right)^{2} \right) dx = \pi \int_{1}^{2} 2 - x \, dx = \pi \left(2x - \frac{1}{2}x^{2} \right) \Big|_{1}^{2}$$

ANSWER: $\pi \left(4 - 2 - 2 + \frac{1}{2} \right) = \frac{\pi}{2}$

(b) enclosed by $y = x^2$ and y = 3x; about x = 4

This can be done using shells. Setting $x^2 = 3x$ yields x = 0, 3.

$$V = \int_0^3 2\pi (4-x)(3x-x^2) \, dx = 2\pi \int_0^3 12x - 7x^2 + x^3 \, dx = 2\pi \left(6x^2 - \frac{7}{3}x^3 + \frac{1}{4}x^4 \right) \Big|_0^3$$

ANSWER: $2\pi \left(54 - 63 + \frac{1}{4}81 \right) = \frac{45\pi}{2}$

4. (10 pts) A 100 foot tower has cross sectional areas which, at height y, are given by $A(y) = \frac{y}{1+y^2}$. Find its volume.

$$V = \int_{0}^{100} A(y) \, dy = \int_{0}^{100} \frac{y}{1+y^2} \, dy = \frac{1}{2} \ln \left| 1+y^2 \right| \Big|_{0}^{100}$$

ANSWER: $\frac{\ln 10001}{2}$

5. (10 pts) Find the average value of $f(x) = x^2 \sqrt{1 + x^3}$ over [0, 2].

$$f_{ave} = \frac{1}{2-0} \int_0^2 x^2 (1+x^3)^{1/2} \, dx = \frac{1}{2} \int_1^9 u^{1/2} \frac{du}{3} = \frac{1}{6} \frac{2}{3} u^{3/2} \Big|_1^9$$

Here we performed substitution $u = 1 + x^3$ with which $x^2 dx = \frac{du}{3}$.

ANSWER:
$$\frac{1}{9}(9^{3/2} - 1) = \frac{26}{9}$$

6. (24 pts) Evaluate the following indefinite integrals.

(a) $\int 2x \cos x^2 dx$

We use substitution $u = x^2$ with which du = 2x dx.

$$\int 2x \cos x^2 \, dx = \int \cos u \, du = \sin u + C$$
ANSWER: $\sin x^2 + C$

(b) $\int x^2 \cos x \, dx$

We use integration by parts twice. First, let $u = x^2$ and $dv = \cos x \, dx$ so that $du = 2x \, dx$ and $v = \sin x$.

$$\int x^2 \cos x \, dx = x^2 \sin x - \int 2x \sin x \, dx$$

Second, let u = 2x and $dv = \sin x \, dx$ so that $du = 2 \, dx$ and $v = -\cos x$.

$$x^{2}\sin x - \int 2x\sin x \, dx = x^{2}\sin x - \left(-2x\cos x - \int -2\cos x \, dx\right)$$

ANSWER: $x^2 \sin x + 2x \cos x - 2 \sin x + C$

(c)
$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$$

We use substitution $u = \sqrt{x}$ with which $du = \frac{1}{2\sqrt{x}} dx$.

$$\int \frac{e^{\sqrt{x}}}{\sqrt{x}} \, dx = \int e^u \, 2du = 2e^u + C$$

ANSWER:
$$2e^{\sqrt{x}} + C$$

(d) $\int \arcsin x \, dx$

We integrate by parts. Let $u = \arcsin x$ and dv = dx so that $du = \frac{1}{\sqrt{1 - x^2}} dx$ and v = x. $\int \arcsin x \, dx = x \arcsin x - \int \frac{x}{\sqrt{1 - x^2}} dx$

Next, we perform substitution $s = 1 - x^2$ with which ds = -2x dx.

$$\int \arcsin x \, dx = x \arcsin x - \int \frac{1}{s^{1/2}} \left(-\frac{ds}{2}\right)$$
$$= x \arcsin x + \frac{1}{2} \int s^{-1/2} \, ds$$
$$= x \arcsin x + \frac{1}{2} \frac{2}{1} s^{1/2} + C$$

ANSWER: $x \arcsin x + \sqrt{1 - x^2} + C$

7. (16 pts) Evaluate the following indefinite integrals.

(a)
$$\int \sin^3 x \cos^5 x \, dx$$
$$\int \sin^3 x \cos^5 x \, dx = \int \sin^3 x \cos^4 x \cos x \, dx$$
$$= \int \sin^3 x (1 - \sin^2 x)^2 \cos x \, dx \quad (u = \sin x; \, du = \cos x \, dx)$$
$$= \int u^3 (1 - u^2)^2 \, du$$
$$= \int u^3 (1 - 2u^2 + u^4) \, du$$
$$= \int u^3 - 2u^5 + u^7 \, du$$
$$= \frac{1}{4}u^4 - \frac{1}{3}u^6 + \frac{1}{8}u^8 + C$$
ANSWER: $\frac{1}{4}\sin^4 x - \frac{1}{3}\sin^6 x + \frac{1}{8}\sin^8 x + C$

(b)
$$\int \tan^3 x \sec^4 x \, dx$$

$$\int \tan^3 x \sec^4 x \, dx = \int \tan^3 x \sec^2 x \sec^2 x \, dx$$

= $\int \tan^3 x (1 + \tan^2 x) \sec^2 x \, dx$ ($u = \tan x$; $du = \sec^2 x \, dx$)
= $\int u^3 (1 + u^2) \, du$
= $\int u^3 + u^5 \, du$
= $\frac{1}{4}u^4 + \frac{1}{6}u^6 + C$
ANSWER: $\frac{1}{4}\tan^4 x + \frac{1}{6}\tan^6 x + C$