Leap Frog Practice

- 1. A circle is inscribed in the isosceles triangle with respective side lengths 6, 6 and 4. Determine the area of the inscribed circle.
 - (a) $\pi/2$
 - (b) $3\pi/2$
 - (c) $5\pi/2$
 - (d) $7\pi/2$
 - (e) None of these
- 2. Quadrilateral ABCD in the Cartesian plane is pictured below. Determine the area enclosed by ABCD. (You may assume b > a and c > d as pictured.)

- 3. What is the volume of the cube that circumscribes the sphere that circumscribes the cube that circumscribes the sphere of radius 1 inch?
 - (a) $9\sqrt{3}$ in³
 - (b) $16\sqrt{2} \text{ in}^3$
 - (c) $24\sqrt{3}$ in³
 - (d) $54\sqrt{2}$ in³
 - (e) None of these
- 4. What is the value of a so that the vertical line x = a divides the triangle $\triangle ABC$ pictured below into two regions of equal area?
 - (a) $a = \sqrt{7}$ (b) $a = \frac{7}{2}$ (c) a = 3(d) $a = 10 - 2\sqrt{10}$ (e) None of these

Leap Frog Practice

- 5. In the figure below, the rectangle is a square, whose side lengths are all equal to the value a, and the circle is inscribed as pictured. Determine the radius, r, of the inscribed circle.
 - (a) $r = a(\frac{\sqrt{2}}{2})$ (b) $r = a(1 - \frac{\sqrt{2}}{2})$ (c) $r = a(\sqrt{2} - 1)$ (d) $r = a(2 - \sqrt{2})$ (e) None of these

- 6. Two $2' \times 2'$ squares share the same center and one square is rotated 45° with respect to the other square (see picture below). Determine the shaded area that is enclosed by both squares.
 - (a) $4\sqrt{2} 4$ ft²
 - (b) $4\sqrt{2} + 4$ ft²
 - (c) $2\sqrt{2} + 2$ ft²
 - (d) $8\sqrt{2} 8 \text{ ft}^2$
 - (e) None of these

- 7. A circle is inscribed in a square. A square is inscribed in that circle. A second circle is inscribed in that square. What is the ratio of the area of the smallest circle to the area of the largest square?
 - (a) $\pi/2$
 - (b) $\pi^2/4$
 - (c) $\pi/8$
 - (d) $\pi^2/16$
 - (e) None of these

- 8. A cylinder with radius r and height h has volume 1 and total surface area 12. Compute $\frac{1}{r} + \frac{1}{h}$.
 - (a) $\frac{1}{12}$
 - (b) $\frac{1}{6}$
 - (c) 6
 - (d) 12