Leap Frog Practice

1. A circle is inscribed in the isosceles triangle with respective side lengths 6,6 and 4 . Determine the area of the inscribed circle.
(a) $\pi / 2$
(b) $3 \pi / 2$
(c) $5 \pi / 2$
(d) $7 \pi / 2$
(e) None of these
2. Quadrilateral $A B C D$ in the Cartesian plane is pictured below. Determine the area enclosed by $A B C D$. (You may assume $b>a$ and $c>d$ as pictured.)
(a) Area $=\frac{1}{4}(a+b)(d+c)$
(b) Area $=\frac{1}{4}(a+d)(b+c)$
(c) Area $=\frac{1}{2}(a d+b c)$
(d) Area $=\frac{1}{2}(a c+b d)$
(e) None of these

3. What is the volume of the cube that circumscribes the sphere that circumscribes the cube that circumscribes the sphere of radius 1 inch?
(a) $9 \sqrt{3} \mathrm{in}^{3}$
(b) $16 \sqrt{2} \mathrm{in}^{3}$
(c) $24 \sqrt{3} \mathrm{in}^{3}$
(d) $54 \sqrt{2} \mathrm{in}^{3}$
(e) None of these
4. What is the value of a so that the vertical line $x=a$ divides the triangle $\triangle A B C$ pictured below into two regions of equal area?
(a) $a=\sqrt{7}$
(b) $a=\frac{7}{2}$
(c) $a=3$
(d) $a=10-2 \sqrt{10}$
(e) None of these

Leap Frog Practice

5. In the figure below, the rectangle is a square, whose side lengths are all equal to the value a, and the circle is inscribed as pictured. Determine the radius, r, of the inscribed circle.
(a) $r=a\left(\frac{\sqrt{2}}{2}\right)$
(b) $r=a\left(1-\frac{\sqrt{2}}{2}\right)$
(c) $r=a(\sqrt{2}-1)$
(d) $r=a(2-\sqrt{2})$
(e) None of these

6. Two $2^{\prime} \times 2^{\prime}$ squares share the same center and one square is rotated 45° with respect to the other square (see picture below). Determine the shaded area that is enclosed by both squares.
(a) $4 \sqrt{2}-4 \mathrm{ft}^{2}$
(b) $4 \sqrt{2}+4 \mathrm{ft}^{2}$
(c) $2 \sqrt{2}+2 \mathrm{ft}^{2}$
(d) $8 \sqrt{2}-8 \mathrm{ft}^{2}$
(e) None of these

7. A circle is inscribed in a square. A square is inscribed in that circle. A second circle is inscribed in that square. What is the ratio of the area of the smallest circle to the area of the largest square?
(a) $\pi / 2$
(b) $\pi^{2} / 4$
(c) $\pi / 8$
(d) $\pi^{2} / 16$
(e) None of these

8. A cylinder with radius r and height h has volume 1 and total surface area 12. Compute $\frac{1}{r}+\frac{1}{h}$.
(a) $\frac{1}{12}$
(b) $\frac{1}{6}$
(c) 6
(d) 12
