Math Field Day Prep Session Grades 9-10

Instructors:
Matt Elizondo
Alison Garcia
Ashley Lopez
Maria Nogin

California State University, Fresno March 7, 2019

Formulas you should know

Perimeter, area, surface area, volume:

- triangle
- rectangle
- trapezoid
- parallelogram
- circle
- prism
- pyramid
- cylinder
- cone
- sphere

Similar figures/solids and their perimeters/areas/volumes.

Theorems about angles

Sum of interior angles in any triangle is 180°, in any n-gon $(n-2) \cdot 180^{\circ}$.

Relationships between interior/exterior angles in a triangle.

In a regular n-gon, each exterior angle is $\frac{360^{\circ}}{n}$, each interior angle is $\frac{n-2}{n} \cdot 180^{\circ}$.

Theorems about triangles

Ratios of lengths of sides of $30^{\circ}-60^{\circ}-90^{\circ}$ and $45^{\circ}-45^{\circ}-90^{\circ}$ triangles.

The area of an equilateral triangle with side s is $\frac{\sqrt{3}}{4} s^{2}$.

Pythagorean Theorem.

The three medians in any triangle are concurrent and each median is divided by the intersection point into two parts whole lengths have ratio 1:2.

Example 1

The radius of a sphere is tripled, by what number is its volume multiplied?

Example 1

The radius of a sphere is tripled, by what number is its volume multiplied?

One sheet of metal can be melted down to make a spherical ball with a radius of 2 cm . How many such sheets would need to be melted down to make a spherical ball of radius 6 cm ?

Example 1

The radius of a sphere is tripled, by what number is its volume multiplied?

One sheet of metal can be melted down to make a spherical ball with a radius of 2 cm . How many such sheets would need to be melted down to make a spherical ball of radius 6 cm ?

Solution. Since the volume grows proportionally to the cube of the radius, the volume increases by a factor of $3^{3}=27$ when the radius increases by a factor of 3 .

Example 2

What is the measure of each interior angle of a regular decagon?

Example 2

What is the measure of each interior angle of a regular decagon?

Solution. Each exterior angle is $\frac{1}{10} \cdot 360^{\circ}=36^{\circ}$, so each interior angle is $180^{\circ}-36^{\circ}=144^{\circ}$.

Mad Hatter

- Solo competition, rapid fire computation
- Multiple choice format, problems read aloud
- 2 minutes per problem
- 2 parts with 60 minutes each
- Pencil/paper allowed
- Correct $=1$ points, blank $=0$ points, incorrect $=0$ points
- Highest score WINS

For this mock test, 10 questions will be given. 2 minutes per problem.

Problem 1

If the measure, in degrees, of the three angles of a triangle are x, $x+10$, and $2 x-6$, the triangle must be
(a) right.
(b) equilateral.
(c) isosceles.
(d) scalene.

Problem 2

The perimeter of a rhombus is 200 feet and one of its diagonals is 80 feet. What is the area of the rhombus?
(a) 1200
(b) 1500
(c) 2000
(d) 2400

Problem 3

An analog clock displays the time $3: 40$. What is the measure of the smaller angle formed by the minute and hour hands of the clock?
(a) 100°
(b) 110°
(c) 120°
(d) 130°

Problem 4

Three balls are stacked in a cylinder that touches the stack on all sides and on the top and bottom. What is the ratio of the volume of balls to the volume of the cylinder?
(a) $\frac{2}{9}$
(b) $\frac{2}{3}$
(c) $\frac{4}{9}$
(d) $\frac{4}{3}$

Problem 5

The surface area of a large cube is 5400 square inches. This cube is cut into a number of identical smaller cubes, each having a volume of 216 cubic inches. How many smalller cubes are there?
(a) 180
(b) 164
(c) 125
(d) 64

Problem 6

Let $B E$ be a median of triangle $A B C$, and let D be a point on $A B$ such that $\frac{B D}{D A}=\frac{3}{7}$. What is the ratio of the area of triangle $B E D$ to that of triangle $A B C$?
(a) $\frac{3}{10}$
(b) $\frac{10}{3}$
(c) $\frac{3}{20}$
(d) $\frac{10}{6}$

Problem 7

Three identical coins of radius 1 are placed on a table so that they are mutually tangent. A smaller coin is placed between them tangent to all three. What is the radius of the smaller coin?
(a) $\frac{1}{3}$
(b) $\frac{2}{\sqrt{3}}-1$
(c) $\sqrt{2}-1$
(d) $\frac{1}{2 \sqrt{3}}$

Problem 8

Two points A and B lie on a sphere of radius 12 . The length of the straight line segment joining A and B is $12 \sqrt{3}$. What is the length of the shortest path from A to B if every point of the path must lie on the sphere?
(a) 6π
(b) 8π
(c) 9π
(d) 12π

Problem 9

A paper cone has height 12 inches and the diameter of the base has length 10 inches. The cone is cut along one side and unrolled to form a portion of a disk. What angle of the circle does this portion include?
(a) $\frac{5 \pi}{13}$
(b) $\frac{5 \pi}{12}$
(c) $\frac{10 \pi}{13}$
(d) $\frac{5 \pi}{6}$

Problem 10

Consider a triangular pyramid $A B C D$ with equilateral base $A B C$ of side length 1 such that $A D=B C=C D$ and $m \angle A D B=m \angle B D C=m \angle A D C=90^{\circ}$. Find the volume of $A B C D$.
(a) $\frac{2}{24}$
(b) $\frac{\sqrt{3}}{24}$
(c) $\frac{1}{12}$
(d) $\frac{\sqrt{2}}{24}$

Test Complete!

Take a moment, breathe, relax.

Problem 1

(MH 9-10 2017) If the measure, in degrees, of the three angles of a triangle are $x, x+10$, and $2 x-6$, the triangle must be
(a) right.
(b) equilateral.
(c) isosceles.
(d) scalene.

Problem 1

(MH 9-10 2017) If the measure, in degrees, of the three angles of a triangle are $x, x+10$, and $2 x-6$, the triangle must be
(a) right.
(b) equilateral.
(c) isosceles.
(d) scalene.

Answer: (d)

Problem 2

(MH 9-10 2017) The perimeter of a rhombus is 200 feet and one of its diagonals is 80 feet. What is the area of the rhombus?
(a) 1200

(b) 1500
(c) 2000
(d) 2400

Problem 2

(MH 9-10 2017) The perimeter of a rhombus is 200 feet and one of its diagonals is 80 feet. What is the area of the rhombus?
(a) 1200
(b) 1500
(c) 2000
(d) 2400

Answer: (d)

Problem 3

(MH 9-10 2017) An analog clock displays the time 3:40. What is the measure of the smaller angle formed by the minute and hour hands of the clock?
(a) 100°
(b) 110°
(c) 120°
(d) 130°

Problem 3

(MH 9-10 2017) An analog clock displays the time 3:40. What is the measure of the smaller angle formed by the minute and hour hands of the clock?
(a) 100°
(b) 110°
(c) 120°
(d) 130°

Answer: (d)

Problem 4

(MH 9-10, 2015) Three balls are stacked in a cylinder that touches the stack on all sides and on the top and bottom. What is the ratio of the volume of balls to the volume of the cylinder?
(a) $\frac{2}{9}$
(b) $\frac{2}{3}$
(c) $\frac{4}{9}$
(d) $\frac{4}{3}$

Problem 4

(MH 9-10, 2015) Three balls are stacked in a cylinder that touches the stack on all sides and on the top and bottom. What is the ratio of the volume of balls to the volume of the cylinder?
(a) $\frac{2}{9}$
(b) $\frac{2}{3}$
(c) $\frac{4}{9}$
(d) $\frac{4}{3}$

Answer: (b)

Problem 5

(MH 9-10, 2009) The surface area of a large cube is 5400 square inches. This cube is cut into a number of identical smaller cubes, each having a volume of 216 cubic inches. How many smaller cubes are there?
(a) 180
(b) 164
(c) 125
(d) 64

Problem 5

(MH 9-10, 2009) The surface area of a large cube is 5400 square inches. This cube is cut into a number of identical smaller cubes, each having a volume of 216 cubic inches. How many smaller cubes are there?
(a) 180
(b) 164
(c) 125
(d) 64

Answer: (c)

Problem 6

(MH 9-10, 2015) Let $B E$ be a median of triangle $A B C$, and let D be a point on $A B$ such that $\frac{B D}{D A}=\frac{3}{7}$. What is the ratio of the area of triangle $B E D$ to that of triangle $A B C$?
(a) $\frac{3}{10}$
(b) $\frac{10}{3}$
(c) $\frac{3}{20}$
(d) $\frac{10}{6}$

Problem 6

(MH 9-10, 2015) Let $B E$ be a median of triangle $A B C$, and let D be a point on $A B$ such that $\frac{B D}{D A}=\frac{3}{7}$. What is the ratio of the area of triangle $B E D$ to that of triangle $A B C$?
(a) $\frac{3}{10}$
(b) $\frac{10}{3}$
(c) $\frac{3}{20}$
(d) $\frac{10}{6}$

Answer: (c)

Problem 7

(MH 9-10, 2015) Three identical coins of radius 1 are placed on a table so that they are mutually tangent. A smaller coin is placed between them tangent to all three. What is the radius of the smaller coin?
(a) $\frac{1}{3}$
(b) $\frac{2}{\sqrt{3}}-1$
(c) $\sqrt{2}-1$
(d) $\frac{1}{2 \sqrt{3}}$

Problem 7

(MH 9-10, 2015) Three identical coins of radius 1 are placed on a table so that they are mutually tangent. A smaller coin is placed between them tangent to all three. What is the radius of the smaller coin?
(a) $\frac{1}{3}$
(b) $\frac{2}{\sqrt{3}}-1$
(c) $\sqrt{2}-1$
(d) $\frac{1}{2 \sqrt{3}}$

Answer: (b)

Problem 8

(MH 9-10, 2010) Two points A and B lie on a sphere of radius 12 . The length of the straight line segment joining A and B is $12 \sqrt{3}$. What is the length of the shortest path from A to B if every point of the path must lie on the sphere?
(a) 6π
(b) 8π
(c) 9π
(d) 12π

Problem 8

(MH 9-10, 2010) Two points A and B lie on a sphere of radius 12. The length of the straight line segment joining A and B is $12 \sqrt{3}$. What is the length of the shortest path from A to B if every point of the path must lie on the sphere?
(a) 6π
(b) 8π
(c) 9π
(d) 12π

Answer: (b)

Problem 9

(MH 9-10, 2015) A paper cone has height 12 inches and the diameter of the base has length 10 inches. The cone is cut along one side and unrolled to form a portion of a disk. What angle of the circle does this portion include?
(a) $\frac{5 \pi}{13}$
(b) $\frac{5 \pi}{12}$
(c) $\frac{10 \pi}{13}$
(d) $\frac{5 \pi}{6}$

Problem 9

(MH 9-10, 2015) A paper cone has height 12 inches and the diameter of the base has length 10 inches. The cone is cut along one side and unrolled to form a portion of a disk. What angle of the circle does this portion include?
(a) $\frac{5 \pi}{13}$
(b) $\frac{5 \pi}{12}$
(c) $\frac{10 \pi}{13}$
(d) $\frac{5 \pi}{6}$

Answer: (c)

Problem 10

(MH 9-10, 2017) Consider a triangular pyramid $A B C D$ with equilateral base $A B C$ of side length 1 such that $A D=B C=C D$ and $m \angle A D B=m \angle B D C=m \angle A D C=90^{\circ}$. Find the volume of $A B C D$.
(a) $\frac{2}{24}$
(b) $\frac{\sqrt{3}}{24}$
(c) $\frac{1}{12}$
(d) $\frac{\sqrt{2}}{24}$

Problem 10

(MH 9-10, 2017) Consider a triangular pyramid $A B C D$ with equilateral base $A B C$ of side length 1 such that $A D=B C=C D$ and $m \angle A D B=m \angle B D C=m \angle A D C=90^{\circ}$. Find the volume of $A B C D$.
(a) $\frac{2}{24}$
(b) $\frac{\sqrt{3}}{24}$
(c) $\frac{1}{12}$
(d) $\frac{\sqrt{2}}{24}$

Answer: (d)

Leap Frog

- Teams of two people from the same school
- Each team member gets 10 problems
- First hour: each team member works on his/her own 10 problems, no communication is allowed
- Second hour: may communicate, exchange papers, etc.
- Turn in a single set of 20 answers from the team
- Correct $=4$ points, blank $=0$ points, incorrect $=-1$ points

For this mock test, each team member will get 4 problems. 20 minutes per part.

Problem 1

(LF 9-10, 2017) A circle is inscribed in the isosceles triangle with respective side lengths 6,6 and 4 . Determine the area of the inscribed circle.
(a) $\pi / 2$
(b) $3 \pi / 2$
(c) $5 \pi / 2$
(d) $7 \pi / 2$
(e) None of these

Problem 1

(LF 9-10, 2017) A circle is inscribed in the isosceles triangle with respective side lengths 6,6 and 4 . Determine the area of the inscribed circle.
(a) $\pi / 2$
(b) $3 \pi / 2$
(c) $5 \pi / 2$
(d) $7 \pi / 2$
(e) None of these

Answer: (e)

Problem 2

(LF 9-10, 2015) Quadrilateral $A B C D$ in the Cartesian plane is pictured below. Determine the area enclosed by $A B C D$. (You may assume $b>a$ and $c>d$ as pictured.)

(a) Area $=\frac{1}{4}(a+b)(d+c)$
(b) Area $=\frac{1}{4}(a+d)(b+c)$
(c) Area $=\frac{1}{2}(a d+b c)$
(d) Area $=\frac{1}{2}(a c+b d)$
(e) None of these

Problem 2

(LF 9-10, 2015) Quadrilateral $A B C D$ in the Cartesian plane is pictured below. Determine the area enclosed by $A B C D$. (You may assume $b>a$ and $c>d$ as pictured.)

(a) Area $=\frac{1}{4}(a+b)(d+c)$
(b) Area $=\frac{1}{4}(a+d)(b+c)$
(c) Area $=\frac{1}{2}(a d+b c)$
(d) Area $=\frac{1}{2}(a c+b d)$
(e) None of these

Answer: (d)

Problem 3

(LF 9-12, 2005) What is the volume of the cube that circumscribes the sphere that circumscribes the cube that circumscribes the sphere of radius 1 inch?
(a) $9 \sqrt{3} \mathrm{in}^{3}$
(b) $16 \sqrt{2} \mathrm{in}^{3}$
(c) $24 \sqrt{3} \mathrm{in}^{3}$
(d) $54 \sqrt{2} \mathrm{in}^{3}$
(e) None of these

Problem 3

(LF 9-12, 2005) What is the volume of the cube that circumscribes the sphere that circumscribes the cube that circumscribes the sphere of radius 1 inch?
(a) $9 \sqrt{3}$ in 3
(b) $16 \sqrt{2} \mathrm{in}^{3}$
(c) $24 \sqrt{3} \mathrm{in}^{3}$
(d) $54 \sqrt{2} \mathrm{in}^{3}$
(e) None of these

Answer: (c)

Problem 4

(LF 9-10, 2015) What is the value of a so that the vertical line $x=a$ divides the triangle $\triangle A B C$ pictured below into two regions of equal area?
(a) $a=\sqrt{7}$
(b) $a=\frac{7}{2}$
(c) $a=3$
(d) $a=10-2 \sqrt{10}$

(e) None of these

Problem 4

(LF 9-10, 2015) What is the value of a so that the vertical line $x=a$ divides the triangle $\triangle A B C$ pictured below into two regions of equal area?
(a) $a=\sqrt{7}$
(b) $a=\frac{7}{2}$
(c) $a=3$
(d) $a=10-2 \sqrt{10}$

(e) None of these

Answer: (d)

Problem 5

(LF 9-10, 2015) In the figure below, the rectangle is a square, whose side lengths are all equal to the value a, and the circle is inscribed as pictured. Determine the radius, r, of the inscribed circle.
(a) $r=a\left(\frac{\sqrt{2}}{2}\right)$
(b) $r=a\left(1-\frac{\sqrt{2}}{2}\right)$
(c) $r=a(\sqrt{2}-1)$
(d) $r=a(2-\sqrt{2})$
(e) None of these

Problem 5

(LF 9-10, 2015) In the figure below, the rectangle is a square, whose side lengths are all equal to the value a, and the circle is inscribed as pictured. Determine the radius, r, of the inscribed circle.
(a) $r=a\left(\frac{\sqrt{2}}{2}\right)$
(b) $r=a\left(1-\frac{\sqrt{2}}{2}\right)$
(c) $r=a(\sqrt{2}-1)$
(d) $r=a(2-\sqrt{2})$
(e) None of these

Answer: (b)

Problem 6

(LF 9-10, 2015) Two $2^{\prime} \times 2^{\prime}$ squares share the same center and one square is rotated 45° with respect to the other square (see picture below). Determine the shaded area that is enclosed by both squares.
(a) $4 \sqrt{2}-4 \mathrm{ft}^{2}$
(b) $4 \sqrt{2}+4 \mathrm{ft}^{2}$
(c) $2 \sqrt{2}+2 \mathrm{ft}^{2}$
(d) $8 \sqrt{2}-8 \mathrm{ft}^{2}$
(e) None of these

Problem 6

(LF 9-10, 2015) Two $2^{\prime} \times 2^{\prime}$ squares share the same center and one square is rotated 45° with respect to the other square (see picture below). Determine the shaded area that is enclosed by both squares.
(a) $4 \sqrt{2}-4 \mathrm{ft}^{2}$
(b) $4 \sqrt{2}+4 \mathrm{ft}^{2}$
(c) $2 \sqrt{2}+2 \mathrm{ft}^{2}$
(d) $8 \sqrt{2}-8 \mathrm{ft}^{2}$
(e) None of these

Answer: (d)

Problem 7

(LF 9-10, 2017) A circle is inscribed in a square. A square is inscribed in that circle. A second circle is inscribed in that square. What is the ratio of the area of the smallest circle to the area of the largest square?
(a) $\pi / 2$
(b) $\pi^{2} / 4$
(c) $\pi / 8$
(d) $\pi^{2} / 16$
(e) None of these

Problem 7

(LF 9-10, 2017) A circle is inscribed in a square. A square is inscribed in that circle. A second circle is inscribed in that square. What is the ratio of the area of the smallest circle to the area of the largest square?
(a) $\pi / 2$
(b) $\pi^{2} / 4$
(c) $\pi / 8$
(d) $\pi^{2} / 16$
(e) None of these

Answer: (c)

Problem 8

(MH 9-10, 2010) A cylinder with radius r and height h has volume 1 and total surface area 12 . Compute $\frac{1}{r}+\frac{1}{h}$.
(a) $\frac{1}{12}$
(b) $\frac{1}{6}$
(c) 6
(d) 12
(e) None of these

Problem 8

(MH 9-10, 2010) A cylinder with radius r and height h has volume 1 and total surface area 12 . Compute $\frac{1}{r}+\frac{1}{h}$.
(a) $\frac{1}{12}$
(b) $\frac{1}{6}$
(c) 6
(d) 12
(e) None of these

Answer: (c)

Final Thoughts

This was our second practice session. Any thoughts?

Any questions about the contests? About grading? About anything?

Thanks for Participating!

Next session: Thursday, April 4, 5:30-8:00, PB 138

