Symmetry of the power sum polynomials

Nicholas J. Newsome (presenter)
Maria S. Nogin
Adnan H. Sabuwala

Department of Mathematics
California State University, Fresno

MAA Sectional Meeting
CSU Los Angeles
October 22, 2016
Outline

• Power sum polynomials
• History
• Recursive definition
• Identity involving Bernoulli numbers
• Symmetry
• Open questions
Recall these familiar formulas from Calculus:

\[
\sum_{k=1}^{n} k = 1 + 2 + \ldots + n = \frac{n(n + 1)}{2}
\]

\[
\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6}
\]

\[
\sum_{k=1}^{n} k^3 = 1^3 + 2^3 + \ldots + n^3 = \frac{n^2(n + 1)^2}{4}
\]
Power sum polynomials

Recall these familiar formulas from Calculus:

\[
\sum_{k=1}^{n} k = 1 + 2 + \ldots + n = \frac{n(n + 1)}{2}
\]

\[
\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6}
\]

\[
\sum_{k=1}^{n} k^3 = 1^3 + 2^3 + \ldots + n^3 = \frac{n^2(n + 1)^2}{4}
\]
Power sum polynomials

Recall these familiar formulas from Calculus:

\[
\sum_{k=1}^{n} k = 1 + 2 + \ldots + n = \frac{n(n + 1)}{2}
\]

\[
\sum_{k=1}^{n} k^2 = 1^2 + 2^2 + \ldots + n^2 = \frac{n(n + 1)(2n + 1)}{6}
\]

\[
\sum_{k=1}^{n} k^3 = 1^3 + 2^3 + \ldots + n^3 = \frac{n^2(n + 1)^2}{4}
\]

\[
\sum_{k=1}^{n} k^4 = 1^4 + 2^4 + \ldots + n^4 = \frac{n(n + 1)(2n + 1)(3n^2 + 3n - 1)}{30}
\]
History

- Pythagoreans (c. 570-500 BCE), Greece

 ![Pythagorean Diagram](image)

- Abu Ali al-Hasan (965-1039), Egypt

 \[
 (n + 1) \sum_{i=1}^{n} i^k = \sum_{i=1}^{n} i^{k+1} + \sum_{p=1}^{n} \sum_{i=1}^{p} i^k
 \]

<table>
<thead>
<tr>
<th>$1^k + 2^k + 3^k + \ldots + n^k$</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>$1^k + 2^k + 3^k$</td>
<td>n^k+1</td>
</tr>
<tr>
<td>$1^k + 2^k$</td>
<td>\ldots</td>
</tr>
<tr>
<td>$1^k, 2^k$</td>
<td>3^k+1</td>
</tr>
<tr>
<td>$1^k, 2^k+1$</td>
<td>\ldots</td>
</tr>
<tr>
<td>$1^k, 2^k, 3^k$</td>
<td>n^k</td>
</tr>
</tbody>
</table>
• Pascal (1623-1662), France

\[(n + 1)^{p+1} - \left(1 + n + \binom{p+1}{2} \sum_{k=1}^{n} k^{p-1} \right. \]

\[+ \left(\binom{p+1}{3} \sum_{k=1}^{n} k^{p-2} + \ldots + (p+1) \sum_{k=1}^{n} k \right) \]

\[= (p + 1)(1^p + 2^p + 3^p + \ldots + n^p) \]

• 1900s

If \(n \) is prime,

\[1^p + 2^p + \ldots + n^p \equiv \begin{cases}
-1 \pmod{n} & \text{if } n - 1 \mid p \\
0 \pmod{n} & \text{if } n - 1 \nmid p
\end{cases} \]
Definition 1

For $n \in \mathbb{R}$, let $S_1(n) = \frac{n(n + 1)}{2}$.

For $p \geq 2$ and $n \in \mathbb{R}$, we define

$$S_p(n) = \frac{1}{p + 1} \left[(n + 1)((n + 1)^p - 1) - \sum_{i=1}^{p-1} \binom{p+1}{i} S_i(n) \right].$$
Recursive definition

Definition 1

For $n \in \mathbb{R}$, let $S_1(n) = \frac{n(n + 1)}{2}$.

For $p \geq 2$ and $n \in \mathbb{R}$, we define

$$S_p(n) = \frac{1}{p + 1} \left[(n + 1)((n + 1)^p - 1) - \sum_{i=1}^{p-1} \binom{p + 1}{i} S_i(n) \right].$$

Theorem 2

For $p, n \in \mathbb{N}$, $S_p(n) = \sum_{k=1}^{n} k^p$.

Bernoulli numbers, B_m, are defined as follows:

Definition 3

Let $B_0 = 1$, and for each $m \geq 1$,

$$
\sum_{i=0}^{m} \binom{m+1}{i} B_i = 0.
$$

The first few Bernoulli numbers are:

$$1, \ -\frac{1}{2}, \ \frac{1}{6}, \ 0, \ -\frac{1}{30}, \ 0, \ \frac{1}{42}, \ \ldots$$

Note that for $m \geq 3$ odd, $B_m = 0$.
Identity involving Bernoulli numbers

Theorem 4

For $m, k \in \mathbb{Z}$, $m \geq 1$, $0 \leq k \leq m$,

$$(-1)^{m-k} \binom{m}{k} B_{m-k} = \sum_{i=k}^{m} \binom{m}{i} \binom{i}{k} B_{m-i}$$
Identity involving Bernoulli numbers

Theorem 4

For \(m, k \in \mathbb{Z} \), \(m \geq 1 \), \(0 \leq k \leq m \),

\[
(-1)^{m-k} \binom{m}{k} B_{m-k} = \sum_{i=k}^{m} \binom{m}{i} \binom{i}{k} B_{m-i}
\]

Sketch of Proof

Induction on both \(m \) and \(k \)

- Consider the case \((m, k) = (m, m)\)
- Consider the case \((m, k) = (m, 0)\)
- Assume the statement holds for \((m, k)\) and show it holds for \((m + 1, k + 1)\)
Identity involving Bernoulli numbers

Theorem 4

For $m, k \in \mathbb{Z}, m \geq 1, 0 \leq k \leq m,$

$$(-1)^{m-k} \binom{m}{k} B_{m-k} = \sum_{i=k}^{m} \binom{m}{i} \binom{i}{k} B_{m-i}$$

Sketch of Proof

Induction on both m and k

- Consider the case $(m, k) = (m, m)$
- Consider the case $(m, k) = (m, 0)$
- Assume the statement holds for (m, k) and show it holds for $(m + 1, k + 1)$
Identity involving Bernoulli numbers

Theorem 4

For \(m, k \in \mathbb{Z}, \ m \geq 1, \ 0 \leq k \leq m, \)

\[
(-1)^{m-k} \binom{m}{k} B_{m-k} = \sum_{i=k}^{m} \binom{m}{i} \binom{i}{k} B_{m-i}
\]

Sketch of Proof

Induction on both \(m \) and \(k \)

- Consider the case \((m, k) = (m, m)\)
- **Consider the case \((m, k) = (m, 0)\)**
- Assume the statement holds for \((m, k)\) and show it holds for \((m + 1, k + 1)\)
Identity involving Bernoulli numbers

Theorem 4

For \(m, k \in \mathbb{Z} \), \(m \geq 1 \), \(0 \leq k \leq m \),

\[
(-1)^{m-k} \binom{m}{k} B_{m-k} = \sum_{i=k}^{m} \binom{m}{i} \binom{i}{k} B_{m-i}
\]

Sketch of Proof

Induction on both \(m \) and \(k \)

- Consider the case \((m, k) = (m, m)\)
- Consider the case \((m, k) = (m, 0)\)
- Assume the statement holds for \((m, k)\) and show it holds for \((m + 1, k + 1)\)
Theorem 5

For each \(p \in \mathbb{N} \), \(S_p(n) \) has symmetry about \(-\frac{1}{2}\). Namely, it is symmetric about the vertical line at \(-\frac{1}{2}\) if \(p \) is odd, and symmetric about the point \((-\frac{1}{2}, 0)\) if \(p \) is even.

\[
S_p(n) = 1^{p+1} \sum_{i=0}^{p} (-1)^i \binom{p+1}{i} n^{p+1-i} - i
\]

Expanding \(S_p(-n) \) using the binomial theorem, combining like terms, and using the previous identity for Bernoulli numbers yields

\[
S_p(-n) =
\begin{cases}
 S_p(n) & \text{if } p \text{ is odd}, \\
 -S_p(n) & \text{if } p \text{ is even}.
\end{cases}
\]

Corollary 6

For each \(p \in \mathbb{N} \), the roots of \(S_p(n) \) are symmetric about \(-\frac{1}{2}\). When \(p \) is even, \(S_p(n) \) has \(-\frac{1}{2}\) as a root.
Theorem 5

For each $p \in \mathbb{N}$, $S_p(n)$ has symmetry about $-\frac{1}{2}$. Namely, it is symmetric about the vertical line at $-\frac{1}{2}$ if p is odd, and symmetric about the point $(-\frac{1}{2}, 0)$ if p is even.

Sketch of Proof

Faulhaber’s (Bernoulli’s) Formula

$$S_p(n) = \frac{1}{p+1} \sum_{i=0}^{p} (-1)^i \binom{p+1}{i} B_i n^{p+1-i}$$

Expanding $S_p(-(n+1))$ using the binomial theorem, combining like terms, and using the previous identity for Bernoulli numbers yields

$$S_p(-(n+1)) = \begin{cases} S_p(n) & \text{if } p \text{ is odd}, \\ -S_p(n) & \text{if } p \text{ is even}. \end{cases}$$
Theorem 5

For each $p \in \mathbb{N}$, $S_p(n)$ has symmetry about $-\frac{1}{2}$. Namely, it is symmetric about the vertical line at $-\frac{1}{2}$ if p is odd, and symmetric about the point $(-\frac{1}{2}, 0)$ if p is even.

Sketch of Proof

Faulhaber's (Bernoulli's) Formula

$$S_p(n) = \frac{1}{p+1} \sum_{i=0}^{p} (-1)^i (p+1)^{i+1} B_i n^{p+1-i}$$

Expanding $S_p(-n-1)$ using the binomial theorem, combining like terms, and using the previous identity for Bernoulli numbers yields

$$S_p(-n-1) = \begin{cases} S_p(n) & \text{if } p \text{ is odd,} \\ -S_p(n) & \text{if } p \text{ is even.} \end{cases}$$

Corollary 6

For each $p \in \mathbb{N}$, the roots of $S_p(n)$ are symmetric about $-\frac{1}{2}$. When p is even, $S_p(n)$ has $-\frac{1}{2}$ as a root.
Open questions

- How many (distinct) real roots does $S_p(n)$ have?
- Where are the real roots located?
- Where are the complex roots located?
Thank you!