Hoover High School Math League

March 18-19, 2009

Bases other than 10: Problems

Integers

_
1. Convert 346 _{seven} to a base 10 value.
(a) 181
(b) 346
(c) 567
(d) none of the above
2. Convert 128 ₁₆ to a base 10 number.
(a) 4736
(b) 200
(c) 256
(d) 296
3. Convert 432 (base 10) to a base 5 value.
(a) 3212 _{five}
(b) 2312 _{five}
(c) 432 _{five}
(d) none of the above
4. Convert 384 (base 10) to a hexadecimal (base 16) number.
(a) 100 ₁₆
(b) 120 ₁₆
(c) 140_{16}
(d) 180 ₁₆
5. Which of the following represents the number 34 (base 10) as a base-6 number?
(a) 100_6
(b) 54 ₆
(c) 34 ₆
(d) None of the above
6. $43_{nine} =$
(a) 123_{five}
(b) 125_{five}
(c) 234 _{five}
(d) 124_{five}

7. The binary system uses base-2 numbers (i.e., the only allowable digits are following base 2 numbers is divisible by 2?	e 0 and 1).	Which of the
(a) 111		

- (e) All of the above are divisible by 2.
- 8. In the binary number system, what is 101 plus 110?

- (e) None of the above
- 9. In the hexadecimal number system, what is 1A + 2E?

10. Find the numbers A, B, C, and D in the following base 6 addition.

(a)
$$A = 1, B = 2, C = 3, D = 4$$

(b)
$$A = 3, B = 0, C = 5, D = 3$$

(c)
$$A = 3, B = 0, C = 5, D = 4$$

- (d) none of the above
- 11. $43_{Ten} = \underline{\qquad}_{Negative\ Ten}$

- (d) none of the above
- 12. If the number 86 in base ten is represented as 321 in base *b*, then the number 123 in base *b* can be represented in base ten by what number?

13.	Assume that b and c are two integers that are greater than one. In base b , c^2 is written as 10. Then b^2 , when written in base c is			
	(a) 100			
	(b) 101			
	(c) 10000			
	(d) 1010			
	(e) It cannot be determined			
Decimals				
14.	The number 0.125 (base 10) is represented by which of the following base 2 fractions?			
	(a) 0.001 ₂			
	(b) 0.01 ₂			
	(c) 0.1_2			
	(d) None of the above			
15.	Suppose b is a positive integer base that satisfies the equation $(.111)_7 = (.222)_b$ (where the subscript indicates the base in the representation). Then $b =$			
	(a) 14			
	(b) 13			
	(c) 6			
	(d) 8			
	(e) None of these			
16.	The base-2 number (repeated decimal) $.\overline{01}_2 = .0101012$ is equal to			
	(a) $\frac{1}{3}$			
	(b) $\frac{1}{4}$			
	(c) $\frac{1}{5}$			
	(d) $\frac{1}{6}$			
	(e) None of the above			
17.	When converted to base 10, the infinite repeating base 3 number $0.\overline{12}_3$ is equal to			
	(a) $\frac{1}{2}$			
	(b) $\frac{4}{9}$			
	(c) $\frac{5}{8}$			
	(d) $\frac{5}{9}$			
	(e) None of the above			

- 18. Let $(0.xyxyxy...)_b$ and $(0.yxyxyx...)_b$ be the base b representations of the two numbers A and B respectively, where x and y represent base b digits, not both of which are zero. Then $\frac{A}{B}$
 - (a) $\frac{y+b}{x+b}$
 - (b) $\frac{x+b}{y+b}$
 - (c) $\frac{xb+y}{yb+x}$
 - (d) $\frac{yb+x}{xb+y}$
 - (e) None of the above