Hoover High School Math League
 March 18-19, 2009

Bases other than 10: Solutions

Integers

1. (MH 9-10 2005) Convert 346 seven to a base 10 value.
(a) 181
(b) 346
(c) 567
(d) none of the above

Solution. 346seven $=3 \cdot 7^{2}+4 \cdot 7^{1}+6 \cdot 7^{0}=3 \cdot 49+4 \cdot 7+6=181$.
2. (MH 9-10 2006) Convert 128_{16} to a base 10 number.
(a) 4736
(b) 200
(c) 256
(d) 296

Solution. $128_{16}=1 \cdot 16^{2}+2 \cdot 16+8=296$.
3. (MH 9-10 2005) Convert 432 (base 10) to a base 5 value.
(a) $3212_{\text {five }}$
(b) $2312_{\text {five }}$
(c) $432_{\text {five }}$
(d) none of the above

Solution. $432=3 \cdot 125+2 \cdot 25+1 \cdot 5+2=3212_{\text {five }}$.
4. (MH 9-10 2006) Convert 384 (base 10) to a hexadecimal (base 16) number.
(a) 100_{16}
(b) 120_{16}
(c) 140_{16}
(d) 180_{16}

Solution. $384=1 \cdot 16^{2}+8 \cdot 16+0=180_{16}$.
5. (MH 9-10 2008) Which of the following represents the number 34 (base 10) as a base- 6 number?
(a) 100_{6}
(b) 54_{6}
(c) 34_{6}
(d) None of the above

Solution. $34=5 \cdot 6+4=54_{6}$.
6. (MH 9-10 1998) $43_{\text {nine }}=$
(a) $123_{\text {five }}$
(b) $125_{\text {five }}$
(c) $234_{\text {five }}$
(d) $124_{\text {five }}$

Solution. $43_{\text {nine }}=4 \cdot 9+3=39=1 \cdot 25+2 \cdot 5+4=124_{\text {five }}$.
7. (MH 11-12 2005) The binary system uses base- 2 numbers (i.e., the only allowable digits are 0 and 1). Which of the following base 2 numbers is divisible by 2 ?
(a) 111
(b) 110
(c) 101
(d) 011
(e) All of the above are divisible by 2 .

Solution. Since each power of 2 except 2^{0} is divisible by 2 , a number is divisible by 2 if and only if its base 2 representation ends with 0 .
Note: this is the base 2 analogue of the fact that a number (written in base 10) is divisible by 10 if and only if it ends with 0 .
8. (MH 11-12 2005) In the binary number system, what is 101 plus 110 ?
(a) 211
(b) 111
(c) 1111
(d) 1011
(e) None of the above

Solution. Addition in base b is done similarly to addition in base 10: we add units digits first, then "tens" digits, etc., and carry over whenever we get a sum larger than b, so $101+110=1011$.
9. (MH 9-10 2008) In the hexadecimal number system, what is $1 A+2 E$?
(a) 26
(b) 38
(c) 48
(d) 72

Solution 1. First we add the units digits: $A_{16}+E_{16}=10+14=24=1 \cdot 16+8=18_{16}$, so $1 A_{16}+2 E_{16}=48_{16}$.
Solution 2. Convert the given numbers to base 10, add, and convert back to base 16:
$1 A_{16}+2 E_{16}=(1 \cdot 16+10)+(2 \cdot 16+14)=26+46=72=4 \cdot 16+8=48_{16}$.
10. (MH 9-10 2005) Find the numbers A, B, C, and D in the following base 6 addition.
$3 A 1 B$
$+\quad 205$
$+\quad 200$
(a) $A=1, B=2, C=3, D=4$
(b) $A=3, B=0, C=5, D=3$
(c) $A=3, B=0, C=5, D=4$
(d) none of the above

Solution. We will work from right to left. First we will find C : we must have $3_{6}+C_{6}=12_{6}$, so $3+C=8$, i.e. $C=5$. Now we look at the next digit: we must have $B_{6}+5_{6}=5_{6}$, so $B=0$. Next, $A_{6}+2_{6}=5_{6}$, so $A=3$. Finally, since $3303_{6}+255_{6}=4002_{6}$, we have $D=4$. So the answer is (c).
11. $\left(\right.$ MH 9-10 2003) $43_{\text {Ten }}=$ \qquad Negative Ten
(a) 136
(b) 163
(c) 631
(d) none of the above

Solution. We need to write 43 in the form

$$
c_{k} \cdot b^{k}+c_{k-1} \cdot b^{k-1}+\ldots+c_{2} \cdot b^{2}+c_{1} \cdot b^{1}+c_{0} \cdot b^{0}
$$

where $b=-10$. We have: $43=100-60+3=1 \cdot(-10)^{2}+6 \cdot(-10)+3 \cdot(-10)^{0}=163_{-10}$.
12. (MH 9-10 2008) If the number 86 in base ten is represented as 321 in base b, then the number 123 in base b can be represented in base ten by what number?
(a) 12
(b) 25
(c) 35
(d) 38

Solution. First we need to find b such that $86=3 \cdot b^{2}+2 \cdot b+1$. Solving this quadratic equation, we get two roots: $b=5$ and $b=-17 / 3$. Since the base must be an integer, $b=5$. Then $123_{5}=$ $1 \cdot 25+2 \cdot 5+3=38$.
13. (MH 11-12 2008) Assume that b and c are two integers that are greater than one. In base b, c^{2} is written as 10 . Then b^{2}, when written in base c is
(a) 100
(b) 101
(c) 10000
(d) 1010
(e) It cannot be determined

Solution. If c^{2} is written as 10 in base b, then $c^{2}=b$. Then $b^{2}=c^{4}$, so $b^{2}=10000_{c}$.

Decimals

14. (MH 9-10 2008) The number 0.125 (base 10) is represented by which of the following base 2 fractions?
(a) 0.001_{2}
(b) 0.01_{2}
(c) 0.1_{2}
(d) None of the above

Solution. $0.125=\frac{1}{8}=0 \cdot \frac{1}{2}+0 \cdot \frac{1}{2^{2}}+1 \cdot \frac{1}{2^{3}}=0.001_{2}$.
15. (LF 9-12 2002) Suppose b is a positive integer base that satisfies the equation $(.111 \ldots)_{7}=(.222 \ldots)_{b}$ (where the subscript indicates the base in the representation). Then $b=$
(a) 14
(b) 13
(c) 6
(d) 8
(e) None of these

Solution. $(.111 \ldots)_{7}=(.222 \ldots)_{b}$ is equivalent to

$$
\begin{gathered}
\frac{1}{7}+\frac{1}{7^{2}}+\frac{1}{7^{3}}+\ldots=2 \cdot \frac{1}{b}+2 \cdot \frac{1}{b^{2}}+2 \cdot \frac{1}{b^{3}}+\ldots \\
\frac{1}{7}+\frac{1}{7^{2}}+\frac{1}{7^{3}}+\ldots=2\left(\frac{1}{b}+\frac{1}{b^{2}}+\frac{1}{b^{3}}+\ldots\right) \\
\frac{\frac{1}{7}}{1-\frac{1}{7}}=\frac{2 \cdot \frac{1}{b}}{1-\frac{1}{b}} \\
\frac{1}{6}=\frac{2}{b-1} \\
b-1=12 \\
b=13
\end{gathered}
$$

16. (LF 9-12 2008) The base-2 number (repeated decimal). $\overline{01}_{2}=.010101 \ldots 2$ is equal to
(a) $\frac{1}{3}$
(b) $\frac{1}{4}$
(c) $\frac{1}{5}$
(d) $\frac{1}{6}$
(e) None of the above

Solution.

$$
\begin{aligned}
0 . \overline{01}_{2} & =0 \cdot \frac{1}{2}+1 \cdot \frac{1}{2^{2}}+0 \cdot \frac{1}{2^{3}}+1 \cdot \frac{1}{2^{4}}+0 \cdot \frac{1}{2^{5}}+1 \cdot \frac{1}{2^{6}}+\ldots \\
& =\frac{1}{4}+\frac{1}{4^{2}}+\frac{1}{4^{3}}+\ldots \\
& =\frac{\frac{1}{4}}{1-\frac{1}{4}} \\
& =\frac{1}{4-1} \\
& =\frac{1}{3}
\end{aligned}
$$

17. (LF 9-12 2005) When converted to base 10 , the infinite repeating base 3 number $0 . \overline{12}_{3}$ is equal to
(a) $\frac{1}{2}$
(b) $\frac{4}{9}$
(c) $\frac{5}{8}$
(d) $\frac{5}{9}$
(e) None of the above

Solution.

$$
\begin{aligned}
0 . \overline{12}_{3} & =1 \cdot \frac{1}{3}+2 \cdot \frac{1}{3^{2}}+1 \cdot \frac{1}{3^{3}}+2 \cdot \frac{1}{3^{4}}+\ldots \\
& =\left(\frac{1}{3}+\frac{1}{3^{3}}+\ldots\right)+2\left(\frac{1}{3^{2}}+\frac{1}{3^{4}}+\ldots\right) \\
& =\frac{\frac{1}{3}}{1-\frac{1}{3^{2}}}+\frac{\frac{2}{3^{2}}}{1-\frac{1}{3^{2}}} \\
& =\frac{3}{9-1}+\frac{2}{9-1} \\
& =\frac{5}{8}
\end{aligned}
$$

18. (LF 9-12 2006) Let $(0 . x y x y x y \ldots)_{b}$ and $\left(0 . y_{x y x y x \ldots}\right)_{b}$ be the base b representations of the two numbers A and B respectively, where x and y represent base b digits, not both of which are zero. Then $\frac{A}{B}=$
(a) $\frac{y+b}{x+b}$
(b) $\frac{x+b}{y+b}$
(c) $\frac{x b+y}{y b+x}$
(d) $\frac{y b+x}{x b+y}$
(e) None of the above

Solution.

$$
\begin{aligned}
A & =(0 \cdot x y x y x y \ldots)_{b} \\
& =x \cdot \frac{1}{b}+y \cdot \frac{1}{b^{2}}+x \cdot \frac{1}{b^{3}}+y \cdot \frac{1}{b^{4}}+\ldots \\
& =x\left(\frac{1}{b}+\frac{1}{b^{3}}+\ldots\right)+y\left(\frac{1}{b^{2}}+\frac{1}{b^{4}}+\ldots\right) \\
& =\frac{\frac{x}{b}}{1-\frac{1}{b^{2}}}+\frac{\frac{y}{b^{2}}}{1-\frac{1}{b^{2}}} \\
& =\frac{x b}{b^{2}-1}+\frac{y}{b^{2}-1} \\
& =\frac{x b+y}{b^{2}-1}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
B & =(0 . y x y x y x \ldots)_{b} \\
& =\frac{y b+x}{b^{2}-1}
\end{aligned}
$$

Then $\frac{A}{B}=\frac{\frac{x b+y}{b^{2}-1}}{\frac{y b+x}{b^{2}-1}}=\frac{x b+y}{y b+x}$.

